©hoo$e ЛÄнgიAge©///₾ÄngიAge® Ekohomei©Å TÅLKiNg ი.ბ.м.ლ.

geo.rf.gd

   

На головную страницу 

Адроны
Альфа-распад
Альфа-частица
Аннигиляция
Антивещество
Антинейтрон
Антипротон
Античастицы
Атом
Атомная единица массы
Атомная электростанция
Барионное число
Барионы
Бета-распад
Бетатрон
Бета-частицы
Бозе – Эйнштейна статистика
Бозоны
Большой адронный коллайдер
Большой Взрыв
Боттом. Боттомоний
Брейта-Вигнера формула
Быстрота
Векторная доминантность
Великое объединение
Взаимодействие частиц
Вильсона камера
Виртуальные частицы
Водорода атом
Возбуждённые состояния ядер
Волновая функция
Волновое уравнение
Волны де Бройля
Встречные пучки
Гамильтониан
Гамма-излучение
Гамма-квант
Гамма-спектрометр
Гамма-спектроскопия
Гаусса распределение
Гейгера счётчик
Гигантский дипольный резонанс
Гиперядра
Глюоны
Годоскоп
Гравитационное взаимодействие
Дейтрон
Деление атомных ядер
Детекторы частиц
Дирака уравнение
Дифракция частиц
Доза излучения
Дозиметр
Доплера эффект
Единая теория поля
Зарядовое сопряжение
Зеркальные ядра
Избыток массы (дефект массы)
Изобары
Изомерия ядерная
Изоспин
Изоспиновый мультиплет
Изотопов разделение
Изотопы
Ионизирующее излучение
Искровая камера
Квантовая механика
Квантовая теория поля
Квантовые операторы
Квантовые числа
Квантовый переход
Квант света
Кварк-глюонная плазма
Кварки
Коллайдер
Комбинированная инверсия
Комптона эффект
Комптоновская длина волны
Конверсия внутренняя
Константы связи
Конфайнмент
Корпускулярно волновой дуализм
Космические лучи
Критическая масса
Лептоны
Линейные ускорители
Лоренца преобразования
Лоренца сила
Магические ядра
Магнитный дипольный момент ядра
Магнитный спектрометр
Максвелла уравнения
Масса частицы
Масс-спектрометр
Массовое число
Масштабная инвариантность
Мезоны
Мессбауэра эффект
Меченые атомы
Микротрон
Нейтрино
Нейтрон
Нейтронная звезда
Нейтронная физика
Неопределённостей соотношения
Нормы радиационной безопасности
Нуклеосинтез
Нуклид
Нуклон
Обращение времени
Орбитальный момент
Осциллятор
Отбора правила
Пар образование
Период полураспада
Планка постоянная
Планка формула
Позитрон
Поляризация
Поляризация вакуума
Потенциальная яма
Потенциальный барьер
Принцип Паули
Принцип суперпозиции
Промежуточные W-, Z-бозоны
Пропагатор
Пропорциональный счётчик
Пространственная инверсия
Пространственная четность
Протон
Пуассона распределение
Пузырьковая камера
Радиационный фон
Радиоактивность
Радиоактивные семейства
Радиометрия
Расходимости
Резерфорда опыт
Резонансы (резонансные частицы)
Реликтовое микроволновое излучение
Светимость ускорителя
Сечение эффективное
Сильное взаимодействие
Синтеза реакции
Синхротрон
Синхрофазотрон
Синхроциклотрон
Система единиц измерений
Слабое взаимодействие
Солнечные нейтрино
Сохранения законы
Спаривания эффект
Спин
Спин-орбитальное взаимодействие
Спиральность
Стандартная модель
Статистика
Странные частицы
Струи адронные
Субатомные частицы
Суперсимметрия
Сферическая система координат
Тёмная материя
Термоядерные реакции
Термоядерный реактор
Тормозное излучение
Трансурановые элементы
Трек
Туннельный эффект
Ускорители заряженных частиц
Фазотрон
Фейнмана диаграммы
Фермионы
Формфактор
Фотон
Фотоэффект
Фундаментальная длина
Хиггса бозон
Цвет
Цепные ядерные реакции
Цикл CNO
Циклические ускорители
Циклотрон
Чарм. Чармоний
Черенковский счётчик
Черенковсое излучение
Черные дыры
Шредингера уравнение
Электрический квадрупольный момент ядра
Электромагнитное взаимодействие
Электрон
Электрослабое взаимодействие
Элементарные частицы
Ядерная физика
Ядерная энергия
Ядерные модели
Ядерные реакции
Ядерный взрыв
Ядерный реактор
Ядра энергия связи
Ядро атомное
Ядерный магнитный резонанс (ЯМР)

На головную страницу

 

ДЕТЕКТОРЫ ЧАСТИЦ
Particle detectors

    Детекторы частиц (счётчики частиц) – приборы для регистрации частиц или отдельных атомных ядер и определения их характеристик. Детекторы используются при изучении радиоактивного распада атомных ядер, в экспериментах на ускорителях заряженных частиц и ядерных реакторах, при исследовании космических лучей, а также радиометрии, дозиметрии и в некоторых других случаях.
    Информативность любого опыта с частицами и атомными ядрами напрямую определяется возможностями тех детекторов, которые в нём используются. История ядерной физики и физики частиц — это, по существу, история создания всё новых методов регистрации частиц и совершенствования старых. Создание новых методов детектирования частиц неоднократно отмечалось Нобелевскими премиями. В настоящее время имеется большое число отдельных детекторов и установок, являющихся комбинацией различных детекторов. Они представляют собой образцы современных технических возможностей и, подчас, самыми совершенными устройствами, которые созданы человеком.
    Один из наиболее общих принципов регистрации частицы состоит в следующем. Заряженная частица, двигаясь в нейтральной среде детектора (газ, жидкость, твердое тело, аморфное или кристаллическое), вызывает за счёт электромагнитных сил ионизацию, возбуждение и поляризацию атомов среды. Таким образом, вдоль пути движения частицы появляются свободные заряды (электроны и ионы), возбужденные и поляризованные атомы. Если среда находится в электрическом поле, то в ней возникает электрический ток, который фиксируется в виде короткого электрического импульса. Примерами детекторов этого типа являются пропорциональный счётчик и счётчик Гейгера.
    При переходе возбужденных атомов в исходное состояние, а также возвращении поляризованных атомов в начальное неполяризованное положение излучаются фотоны, которые могут быть зарегистрированы в виде оптической вспышки в видимой или ультрафиолетовой области. Примерами детекторов такого типа являются сцинтилляционный и черенковский счётчики.
    При определенных условиях траекторию свободных электронов и ионов, созданную пролетающей заряженной частицей, можно сделать видимой. Это осуществляется в так называемых трековых детекторах. Камера Вильсона, искровая и пузырьковая камеры – примеры трековых детекторов.
    Нейтральные частицы, такие как нейтрон и нейтрино, непосредственно не вызывают ионизацию и возбуждение атомов среды. Они могут быть зарегистрированы лишь в результате появления вторичных заряженных частиц, возникших в реакциях этих нейтральных частиц с ядрами среды.
    Гамма-кванты также регистрируются по вторичным заряженным частицам – электронам и позитронам, возникающим в среде вследствие фотоэффекта, Комптон-эффекта и рождения электрон-позитронных пар.
    Общие требования к детектирующей аппаратуре сводятся к определению типа частицы (идентификации) и её кинематических характеристик (энергии, импульса и др.). Часто тип частицы известен заранее и задача упрощается. Во многих экспериментах, особенно в физике частиц высоких энергий, используются крупногабаритные и сложные комплексы, состоящие из отдельных детекторов различного типа. Такие комплексы, фиксируя практически все частицы, возникающие в эксперименте, дают достаточно полное представление об изучаемом явлении.
    Основными характеристиками детектора являются – эффективность (вероятность регистрации частицы при попадании её в детектор) и временнoе разрешение (минимальное время, в течение которого детектор фиксирует две частицы как отдельные). Если детектор определяет энергию частицы и (или) её координаты, то он характеризуется также энергетическим разрешением (точностью определения энергии частицы) и пространственным разрешением (точностью определения координаты частицы).


Подробнее см. Детекторы частиц

 

 

Top.Mail.Ru