Module sverchok.utils.voronoi
Expand source code
#############################################################################
#
# Voronoi diagram calculator/ Delaunay triangulator
# Translated to Python by Bill Simons
# September, 2005
#
# Additional changes by Carson Farmer added November 2010
#
# Calculate Delaunay triangulation or the Voronoi polygons for a set of
# 2D input points.
#
# Derived from code bearing the following notice:
#
# The author of this software is Steven Fortune. Copyright (c) 1994 by AT&T
# Bell Laboratories.
# Permission to use, copy, modify, and distribute this software for any
# purpose without fee is hereby granted, provided that this entire notice
# is included in all copies of any software which is or includes a copy
# or modification of this software and in all copies of the supporting
# documentation for such software.
# THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
# WARRANTY. IN PARTICULAR, NEITHER THE AUTHORS NOR AT&T MAKE ANY
# REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
# OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
#
# Comments were incorporated from Shane O'Sullivan's translation of the
# original code into C++ (http://mapviewer.skynet.ie/voronoi.html)
#
# Steve Fortune's homepage: http://netlib.bell-labs.com/cm/cs/who/sjf/index.html
#
#############################################################################
#
# python 2 to conversion 3 using 2to3 by Linus Yng, added Site.__lt__ and cmp,
# modified output,downloaded from:
# http://svn.osgeo.org/qgis/trunk/qgis/python/plugins/fTools/tools/voronoi.py
#
#############################################################################
def usage():
print("""
voronoi - compute Voronoi diagram or Delaunay triangulation
voronoi [-t -p -d] [filename]
Voronoi reads from filename (or standard input if no filename given) for a set
of points in the plane and writes either the Voronoi diagram or the Delaunay
triangulation to the standard output. Each input line should consist of two
real numbers, separated by white space.
If option -t is present, the Delaunay triangulation is produced.
Each output line is a triple i j k, which are the indices of the three points
in a Delaunay triangle. Points are numbered starting at 0.
If option -t is not present, the Voronoi diagram is produced.
There are four output record types.
s a b indicates that an input point at coordinates a b was seen.
l a b c indicates a line with equation ax + by = c.
v a b indicates a vertex at a b.
e l v1 v2 indicates a Voronoi segment which is a subsegment of line number l
with endpoints numbered v1 and v2. If v1 or v2 is -1, the line
extends to infinity.
Other options include:
d Print debugging info
p Produce output suitable for input to plot (1), rather than the forms
described above.
On unsorted data uniformly distributed in the unit square, voronoi uses about
20n+140 bytes of storage.
AUTHOR
Steve J. Fortune (1987) A Sweepline Algorithm for Voronoi Diagrams,
Algorithmica 2, 153-174.
""")
#############################################################################
#
# For programmatic use two functions are available:
#
# computeVoronoiDiagram(points)
#
# Takes a list of point objects (which must have x and y fields).
# Returns a 3-tuple of:
#
# (1) a list of 2-tuples, which are the x,y coordinates of the
# Voronoi diagram vertices
# (2) a list of 3-tuples (a,b,c) which are the equations of the
# lines in the Voronoi diagram: a*x + b*y = c
# (3) a list of 3-tuples, (l, v1, v2) representing edges of the
# Voronoi diagram. l is the index of the line, v1 and v2 are
# the indices of the vetices at the end of the edge. If
# v1 or v2 is -1, the line extends to infinity.
#
# computeDelaunayTriangulation(points):
#
# Takes a list of point objects (which must have x and y fields).
# Returns a list of 3-tuples: the indices of the points that form a
# Delaunay triangle.
#
#############################################################################
import math
import numpy as np
from math import sqrt, atan2
from collections import defaultdict
import bmesh
from mathutils import Vector
from mathutils.geometry import intersect_line_line_2d
from mathutils.bvhtree import BVHTree
from mathutils.kdtree import KDTree
from sverchok.utils.sv_logging import sv_logger
from sverchok.utils.geom import center, LineEquation2D, CircleEquation2D
from sverchok.utils.math import weighted_center
from sverchok.utils.sv_bmesh_utils import pydata_from_bmesh, bmesh_from_pydata
TOLERANCE = 1e-9
BIG_FLOAT = 1e38
def cmp(x,y):
return x.__cmp__(y)
#------------------------------------------------------------------
class Context(object):
def __init__(self):
self.doPrint = 0
self.debug = 0
self.plot = 0
self.triangulate = False
self.vertices = [] # list of vertex 2-tuples: (x,y)
self.lines = [] # equation of line 3-tuple (a b c), for the equation of the line a*x+b*y = c
self.edges = [] # edge 3-tuple: (line index, vertex 1 index, vertex 2 index) if either vertex index is -1, the edge extends to infiinity
self.triangles = [] # 3-tuple of vertex indices
self.polygons = {} # a dict of site:[edges] pairs
def circle(self,x,y,rad):
pass
def clip_line(self,edge):
pass
def line(self,x0,y0,x1,y1):
pass
def outSite(self,s):
if(self.debug):
print("site (%d) at %f %f" % (s.sitenum, s.x, s.y))
elif(self.triangulate):
pass
elif(self.plot):
self.circle (s.x, s.y, cradius)
elif(self.doPrint):
print("s %f %f" % (s.x, s.y))
def outVertex(self,s):
self.vertices.append((s.x,s.y))
if(self.debug):
print("vertex(%d) at %f %f" % (s.sitenum, s.x, s.y))
elif(self.triangulate):
pass
elif(self.doPrint and not self.plot):
print("v %f %f" % (s.x,s.y))
def outTriple(self,s1,s2,s3):
self.triangles.append((s1.sitenum, s2.sitenum, s3.sitenum))
if(self.debug):
print("circle through left=%d right=%d bottom=%d" % (s1.sitenum, s2.sitenum, s3.sitenum))
elif(self.triangulate and self.doPrint and not self.plot):
print("%d %d %d" % (s1.sitenum, s2.sitenum, s3.sitenum))
def outBisector(self,edge):
self.lines.append((edge.a, edge.b, edge.c))
if(self.debug):
print("line(%d) %gx+%gy=%g, bisecting %d %d" % (edge.edgenum, edge.a, edge.b, edge.c, edge.reg[0].sitenum, edge.reg[1].sitenum))
elif(self.triangulate):
if(self.plot):
self.line(edge.reg[0].x, edge.reg[0].y, edge.reg[1].x, edge.reg[1].y)
elif(self.doPrint and not self.plot):
print("l %f %f %f" % (edge.a, edge.b, edge.c))
def outEdge(self,edge):
sitenumL = -1
if edge.ep[Edge.LE] is not None:
sitenumL = edge.ep[Edge.LE].sitenum
sitenumR = -1
if edge.ep[Edge.RE] is not None:
sitenumR = edge.ep[Edge.RE].sitenum
if edge.reg[0].sitenum not in self.polygons:
self.polygons[edge.reg[0].sitenum] = []
if edge.reg[1].sitenum not in self.polygons:
self.polygons[edge.reg[1].sitenum] = []
self.polygons[edge.reg[0].sitenum].append((edge.edgenum,sitenumL,sitenumR))
self.polygons[edge.reg[1].sitenum].append((edge.edgenum,sitenumL,sitenumR))
self.edges.append((edge.edgenum,sitenumL,sitenumR))
if(not self.triangulate):
if self.plot:
self.clip_line(edge)
elif(self.doPrint):
print("e %d" % edge.edgenum, end=' ')
print(" %d " % sitenumL, end=' ')
print("%d" % sitenumR)
#------------------------------------------------------------------
def voronoi(siteList,context, raise_exception=False):
try:
edgeList = EdgeList(siteList.xmin,siteList.xmax,len(siteList))
priorityQ = PriorityQueue(siteList.ymin,siteList.ymax,len(siteList))
siteIter = siteList.iterator()
bottomsite = next(siteIter)
context.outSite(bottomsite)
newsite = next(siteIter)
minpt = Site(-BIG_FLOAT,-BIG_FLOAT)
while True:
if not priorityQ.isEmpty():
minpt = priorityQ.getMinPt()
if (newsite and (priorityQ.isEmpty() or cmp(newsite,minpt) < 0)):
# newsite is smallest - this is a site event
context.outSite(newsite)
# get first Halfedge to the LEFT and RIGHT of the new site
lbnd = edgeList.leftbnd(newsite)
rbnd = lbnd.right
# if this halfedge has no edge, bot = bottom site (whatever that is)
# create a new edge that bisects
bot = lbnd.rightreg(bottomsite)
edge = Edge.bisect(bot,newsite)
context.outBisector(edge)
# create a new Halfedge, setting its pm field to 0 and insert
# this new bisector edge between the left and right vectors in
# a linked list
bisector = Halfedge(edge,Edge.LE)
edgeList.insert(lbnd,bisector)
# if the new bisector intersects with the left edge, remove
# the left edge's vertex, and put in the new one
p = lbnd.intersect(bisector)
if p is not None:
priorityQ.delete(lbnd)
priorityQ.insert(lbnd,p,newsite.distance(p))
# create a new Halfedge, setting its pm field to 1
# insert the new Halfedge to the right of the original bisector
lbnd = bisector
bisector = Halfedge(edge,Edge.RE)
edgeList.insert(lbnd,bisector)
# if this new bisector intersects with the right Halfedge
p = bisector.intersect(rbnd)
if p is not None:
# push the Halfedge into the ordered linked list of vertices
priorityQ.insert(bisector,p,newsite.distance(p))
newsite = next(siteIter)
elif not priorityQ.isEmpty():
# intersection is smallest - this is a vector (circle) event
# pop the Halfedge with the lowest vector off the ordered list of
# vectors. Get the Halfedge to the left and right of the above HE
# and also the Halfedge to the right of the right HE
lbnd = priorityQ.popMinHalfedge()
llbnd = lbnd.left
rbnd = lbnd.right
rrbnd = rbnd.right
# get the Site to the left of the left HE and to the right of
# the right HE which it bisects
bot = lbnd.leftreg(bottomsite)
top = rbnd.rightreg(bottomsite)
# output the triple of sites, stating that a circle goes through them
mid = lbnd.rightreg(bottomsite)
context.outTriple(bot,top,mid)
# get the vertex that caused this event and set the vertex number
# couldn't do this earlier since we didn't know when it would be processed
v = lbnd.vertex
siteList.setSiteNumber(v)
context.outVertex(v)
# set the endpoint of the left and right Halfedge to be this vector
if lbnd.edge.setEndpoint(lbnd.pm,v):
context.outEdge(lbnd.edge)
if rbnd.edge.setEndpoint(rbnd.pm,v):
context.outEdge(rbnd.edge)
# delete the lowest HE, remove all vertex events to do with the
# right HE and delete the right HE
edgeList.delete(lbnd)
priorityQ.delete(rbnd)
edgeList.delete(rbnd)
# if the site to the left of the event is higher than the Site
# to the right of it, then swap them and set 'pm' to RIGHT
pm = Edge.LE
if bot.y > top.y:
bot,top = top,bot
pm = Edge.RE
# Create an Edge (or line) that is between the two Sites. This
# creates the formula of the line, and assigns a line number to it
edge = Edge.bisect(bot, top)
context.outBisector(edge)
# create a HE from the edge
bisector = Halfedge(edge, pm)
# insert the new bisector to the right of the left HE
# set one endpoint to the new edge to be the vector point 'v'
# If the site to the left of this bisector is higher than the right
# Site, then this endpoint is put in position 0; otherwise in pos 1
edgeList.insert(llbnd, bisector)
if edge.setEndpoint(Edge.RE - pm, v):
context.outEdge(edge)
# if left HE and the new bisector don't intersect, then delete
# the left HE, and reinsert it
p = llbnd.intersect(bisector)
if p is not None:
priorityQ.delete(llbnd);
priorityQ.insert(llbnd, p, bot.distance(p))
# if right HE and the new bisector don't intersect, then reinsert it
p = bisector.intersect(rrbnd)
if p is not None:
priorityQ.insert(bisector, p, bot.distance(p))
else:
break
he = edgeList.leftend.right
while he is not edgeList.rightend:
context.outEdge(he.edge)
he = he.right
Edge.EDGE_NUM = 0
except Exception as err:
if raise_exception:
raise err
else:
print("#Voronoi error#")
print(str(err))
#------------------------------------------------------------------
def isEqual(a,b,relativeError=TOLERANCE):
# is nearly equal to within the allowed relative error
norm = max(abs(a),abs(b))
return (norm < relativeError) or (abs(a - b) < (relativeError * norm))
#------------------------------------------------------------------
class Site(object):
def __init__(self,x=0.0,y=0.0,sitenum=0):
self.x = x
self.y = y
self.sitenum = sitenum
def dump(self):
print("Site #%d (%g, %g)" % (self.sitenum,self.x,self.y))
def __lt__(self, other):
if self.y < other.y:
return 1
elif self.y > other.y:
return 0
elif self.x < other.x:
return 1
elif self.x > other.x:
return 0
def __str__(self):
return str((self.x,self.y))
def __cmp__(self,other):
if self.y < other.y:
return -1
elif self.y > other.y:
return 1
elif self.x < other.x:
return -1
elif self.x > other.x:
return 1
else:
return 0
def distance(self,other):
dx = self.x - other.x
dy = self.y - other.y
return math.sqrt(dx*dx + dy*dy)
#------------------------------------------------------------------
class Edge(object):
LE = 0
RE = 1
EDGE_NUM = 0
DELETED = {} # marker value
def __init__(self):
self.a = 0.0
self.b = 0.0
self.c = 0.0
self.ep = [None,None]
self.reg = [None,None]
self.edgenum = 0
def dump(self):
print("(#%d a=%g, b=%g, c=%g)" % (self.edgenum,self.a,self.b,self.c))
print("ep",self.ep)
print("reg",self.reg)
def setEndpoint(self, lrFlag, site):
self.ep[lrFlag] = site
if self.ep[Edge.RE - lrFlag] is None:
return False
return True
@staticmethod
def bisect(s1,s2):
newedge = Edge()
newedge.reg[0] = s1 # store the sites that this edge is bisecting
newedge.reg[1] = s2
# to begin with, there are no endpoints on the bisector - it goes to infinity
# ep[0] and ep[1] are None
# get the difference in x dist between the sites
dx = float(s2.x - s1.x)
dy = float(s2.y - s1.y)
adx = abs(dx) # make sure that the difference in positive
ady = abs(dy)
# get the slope of the line
newedge.c = float(s1.x * dx + s1.y * dy + (dx*dx + dy*dy)*0.5)
if dx == 0 and dy == 0:
raise Exception(f"Can't build an edge: two points are coinciding: {s1.sitenum}, {s2.sitenum}")
if adx > ady :
# set formula of line, with x fixed to 1
newedge.a = 1.0
newedge.b = dy/dx
newedge.c /= dx
else:
# set formula of line, with y fixed to 1
newedge.b = 1.0
newedge.a = dx/dy
newedge.c /= dy
newedge.edgenum = Edge.EDGE_NUM
Edge.EDGE_NUM += 1
return newedge
#------------------------------------------------------------------
class Halfedge(object):
def __init__(self,edge=None,pm=Edge.LE):
self.left = None # left Halfedge in the edge list
self.right = None # right Halfedge in the edge list
self.qnext = None # priority queue linked list pointer
self.edge = edge # edge list Edge
self.pm = pm
self.vertex = None # Site()
self.ystar = BIG_FLOAT
def dump(self):
print("Halfedge--------------------------")
print("left: ", self.left)
print("right: ", self.right)
print("edge: ", self.edge)
print("pm: ", self.pm)
print("vertex: ", end=' ')
if self.vertex: self.vertex.dump()
else: print("None")
print("ystar: ", self.ystar)
def __cmp__(self,other):
if self.ystar > other.ystar:
return 1
elif self.ystar < other.ystar:
return -1
elif self.vertex.x > other.vertex.x:
return 1
elif self.vertex.x < other.vertex.x:
return -1
else:
return 0
def leftreg(self,default):
if not self.edge:
return default
elif self.pm == Edge.LE:
return self.edge.reg[Edge.LE]
else:
return self.edge.reg[Edge.RE]
def rightreg(self,default):
if not self.edge:
return default
elif self.pm == Edge.LE:
return self.edge.reg[Edge.RE]
else:
return self.edge.reg[Edge.LE]
# returns True if p is to right of halfedge self
def isPointRightOf(self,pt):
e = self.edge
topsite = e.reg[1]
right_of_site = pt.x > topsite.x
if(right_of_site and self.pm == Edge.LE):
return True
if(not right_of_site and self.pm == Edge.RE):
return False
if(e.a == 1.0):
dyp = pt.y - topsite.y
dxp = pt.x - topsite.x
fast = 0;
if ((not right_of_site and e.b < 0.0) or (right_of_site and e.b >= 0.0)):
above = dyp >= e.b * dxp
fast = above
else:
above = pt.x + pt.y * e.b > e.c
if(e.b < 0.0):
above = not above
if (not above):
fast = 1
if (not fast):
dxs = topsite.x - (e.reg[0]).x
above = e.b * (dxp*dxp - dyp*dyp) < dxs*dyp*(1.0+2.0*dxp/dxs + e.b*e.b)
if(e.b < 0.0):
above = not above
else: # e.b == 1.0
yl = e.c - e.a * pt.x
t1 = pt.y - yl
t2 = pt.x - topsite.x
t3 = yl - topsite.y
above = t1*t1 > t2*t2 + t3*t3
if(self.pm==Edge.LE):
return above
else:
return not above
#--------------------------
# create a new site where the Halfedges el1 and el2 intersect
def intersect(self,other):
e1 = self.edge
e2 = other.edge
if (e1 is None) or (e2 is None):
return None
# if the two edges bisect the same parent return None
if e1.reg[1] is e2.reg[1]:
return None
d = e1.a * e2.b - e1.b * e2.a
if isEqual(d,0.0):
return None
xint = (e1.c*e2.b - e2.c*e1.b) / d
yint = (e2.c*e1.a - e1.c*e2.a) / d
if(cmp(e1.reg[1],e2.reg[1]) < 0):
he = self
e = e1
else:
he = other
e = e2
rightOfSite = xint >= e.reg[1].x
if((rightOfSite and he.pm == Edge.LE) or
(not rightOfSite and he.pm == Edge.RE)):
return None
# create a new site at the point of intersection - this is a new
# vector event waiting to happen
return Site(xint,yint)
#------------------------------------------------------------------
class EdgeList(object):
def __init__(self,xmin,xmax,nsites):
if xmin > xmax: xmin,xmax = xmax,xmin
self.hashsize = int(2*math.sqrt(nsites+4))
self.xmin = xmin
self.deltax = float(xmax - xmin)
self.hash = [None]*self.hashsize
self.leftend = Halfedge()
self.rightend = Halfedge()
self.leftend.right = self.rightend
self.rightend.left = self.leftend
self.hash[0] = self.leftend
self.hash[-1] = self.rightend
def insert(self,left,he):
he.left = left
he.right = left.right
left.right.left = he
left.right = he
def delete(self,he):
he.left.right = he.right
he.right.left = he.left
he.edge = Edge.DELETED
# Get entry from hash table, pruning any deleted nodes
def gethash(self,b):
if(b < 0 or b >= self.hashsize):
return None
he = self.hash[b]
if he is None or he.edge is not Edge.DELETED:
return he
# Hash table points to deleted half edge. Patch as necessary.
self.hash[b] = None
return None
def leftbnd(self,pt):
# Use hash table to get close to desired halfedge
bucket = int(((pt.x - self.xmin)/self.deltax * self.hashsize))
if(bucket < 0):
bucket =0;
if(bucket >=self.hashsize):
bucket = self.hashsize-1
he = self.gethash(bucket)
if(he is None):
i = 1
while True:
he = self.gethash(bucket-i)
if (he is not None): break;
he = self.gethash(bucket+i)
if (he is not None): break;
i += 1
# Now search linear list of halfedges for the correct one
if (he is self.leftend) or (he is not self.rightend and he.isPointRightOf(pt)):
he = he.right
while he is not self.rightend and he.isPointRightOf(pt):
he = he.right
he = he.left;
else:
he = he.left
while (he is not self.leftend and not he.isPointRightOf(pt)):
he = he.left
# Update hash table and reference counts
if(bucket > 0 and bucket < self.hashsize-1):
self.hash[bucket] = he
return he
#------------------------------------------------------------------
class PriorityQueue(object):
def __init__(self,ymin,ymax,nsites):
self.ymin = ymin
self.deltay = ymax - ymin
self.hashsize = int(4 * math.sqrt(nsites))
self.count = 0
self.minidx = 0
self.hash = []
for i in range(self.hashsize):
self.hash.append(Halfedge())
def __len__(self):
return self.count
def isEmpty(self):
return self.count == 0
def insert(self,he,site,offset):
he.vertex = site
he.ystar = site.y + offset
last = self.hash[self.getBucket(he)]
next = last.qnext
while((next is not None) and cmp(he,next) > 0):
last = next
next = last.qnext
he.qnext = last.qnext
last.qnext = he
self.count += 1
def delete(self,he):
if (he.vertex is not None):
last = self.hash[self.getBucket(he)]
while last.qnext is not he:
last = last.qnext
last.qnext = he.qnext
self.count -= 1
he.vertex = None
def getBucket(self,he):
bucket = int(((he.ystar - self.ymin) / self.deltay) * self.hashsize)
if bucket < 0: bucket = 0
if bucket >= self.hashsize: bucket = self.hashsize-1
if bucket < self.minidx: self.minidx = bucket
return bucket
def getMinPt(self):
while(self.hash[self.minidx].qnext is None):
self.minidx += 1
he = self.hash[self.minidx].qnext
x = he.vertex.x
y = he.ystar
return Site(x,y)
def popMinHalfedge(self):
curr = self.hash[self.minidx].qnext
self.hash[self.minidx].qnext = curr.qnext
self.count -= 1
return curr
#------------------------------------------------------------------
class SiteList(object):
def __init__(self,pointList):
self.__sites = []
self.__sitenum = 0
self.__xmin = pointList[0].x
self.__ymin = pointList[0].y
self.__xmax = pointList[0].x
self.__ymax = pointList[0].y
for i,pt in enumerate(pointList):
self.__sites.append(Site(pt.x,pt.y,i))
if pt.x < self.__xmin: self.__xmin = pt.x
if pt.y < self.__ymin: self.__ymin = pt.y
if pt.x > self.__xmax: self.__xmax = pt.x
if pt.y > self.__ymax: self.__ymax = pt.y
self.__sites.sort()
def setSiteNumber(self,site):
site.sitenum = self.__sitenum
self.__sitenum += 1
class Iterator(object):
def __init__(this,lst): this.generator = (s for s in lst)
def __iter__(this): return this
def __next__(this):
try:
return next(this.generator)
except StopIteration:
return None
def iterator(self):
return SiteList.Iterator(self.__sites)
def __iter__(self):
return SiteList.Iterator(self.__sites)
def __len__(self):
return len(self.__sites)
def _getxmin(self): return self.__xmin
def _getymin(self): return self.__ymin
def _getxmax(self): return self.__xmax
def _getymax(self): return self.__ymax
xmin = property(_getxmin)
ymin = property(_getymin)
xmax = property(_getxmax)
ymax = property(_getymax)
# siteList = SiteList(points)
# context = Context()
# voronoi(siteList,context)
# return (context.vertices,context.lines,context.edges)
#------------------------------------------------------------------
def computeVoronoiDiagram(points, raise_exception=False):
""" Takes a list of point objects (which must have x and y fields).
Returns a Context object.
(1) context.vertices: a list of 2-tuples, which are the x,y
coordinates of the Voronoi diagram vertices
(2) context.lines: a list of 3-tuples (a,b,c) which are the
equations of the lines in the Voronoi diagram: a*x + b*y = c
(3) context.edges: a list of 3-tuples, (l, v1, v2) representing edges of the
Voronoi diagram. l is the index of the line, v1 and v2 are
the indices of the vetices at the end of the edge. If
v1 or v2 is -1, the line extends to infinity.
(4) context.polygons: a dict of site:[edges] pairs
"""
siteList = SiteList(points)
context = Context()
context.triangulate = True
voronoi(siteList,context, raise_exception)
return context
#------------------------------------------------------------------
def computeDelaunayTriangulation(points):
""" Takes a list of point objects (which must have x and y fields).
Returns a list of 3-tuples: the indices of the points that form a
Delaunay triangle.
"""
# original function in comment
# siteList = SiteList(points)
# context = Context()
# context.triangulate = true
# voronoi(siteList,context)
# return context.triangles
siteList = SiteList(points)
context = Context()
context.triangulate = True
voronoi(siteList,context)
return context.triangles
#-----------------------------------------------------------------------------
# if __name__=="__main__":
# try:
# optlist,args = getopt.getopt(sys.argv[1:],"thdp")
# except getopt.GetoptError:
# usage()
# sys.exit(2)
#
# doHelp = 0
# c = Context()
# c.doPrint = 1
# for opt in optlist:
# if opt[0] == "-d": c.debug = 1
# if opt[0] == "-p": c.plot = 1
# if opt[0] == "-t": c.triangulate = 1
# if opt[0] == "-h": doHelp = 1
#
# if not doHelp:
# pts = []
# fp = sys.stdin
# if len(args) > 0:
# fp = open(args[0],'r')
# for line in fp:
# fld = line.split()
# x = float(fld[0])
# y = float(fld[1])
# pts.append(Site(x,y))
# if len(args) > 0: fp.close()
#
# if doHelp or len(pts) == 0:
# usage()
# sys.exit(2)
#
# sl = SiteList(pts)
# voronoi(sl,c)
class Bounds(object):
def __init__(self):
self.x_max = 0
self.y_max = 0
self.x_min = 0
self.y_min = 0
self.r_max = 0
self.center = (0,0)
@classmethod
def new(cls, mode):
if mode == 'BOX':
return BoxBounds()
elif mode == 'CIRCLE':
return CircleBounds()
else:
raise Exception("Unknown bounds type")
def __repr__(self):
return f"Bounds[C: {self.center}, R: {self.r_max}, X: {self.x_min} - {self.x_max}, Y: {self.y_min} - {self.y_max}]"
def restrict(self, point):
raise Exception("not implemented")
def init_from_sites(self, sites):
self.x_max = -BIG_FLOAT
self.x_min = BIG_FLOAT
self.y_min = BIG_FLOAT
self.y_max = -BIG_FLOAT
x0, y0, z0 = center(sites)
self.center = (x0, y0)
# creates points in format for voronoi library, throwing away z
for x, y, z in sites:
r = sqrt((x-x0)**2 + (y-y0)**2)
self.r_max = max(r, self.r_max)
self.x_max = max(x, self.x_max)
self.x_min = min(x, self.x_min)
self.y_max = max(y, self.y_max)
self.y_min = min(y, self.y_min)
class Mesh2D(object):
def __init__(self):
self.verts = []
self.all_edges = set()
self.linked_verts = defaultdict(set)
self._next_vert = 0
@classmethod
def from_pydata(cls, verts, edges):
mesh = Mesh2D()
for vert in verts:
mesh.new_vert(vert)
for i, j in edges:
mesh.new_edge(i, j)
return mesh
def new_vert(self, vert):
if vert is None:
raise Exception("new_vert(None)")
if vert[0] is None or vert[1] is None:
raise Exception(f"new_vert({vert})")
self.verts.append(vert)
idx = self._next_vert
self._next_vert += 1
return idx
def new_edge(self, i, j):
v1, v2 = self.verts[i], self.verts[j]
#info("Add: %s (%s) => %s (%s)", i, v1, j, v2)
self.all_edges.add((v1, v2))
self.linked_verts[i].add(j)
self.linked_verts[j].add(i)
def remove_edge(self, i, j):
if (self.verts[i], self.verts[j]) in self.all_edges:
self.all_edges.remove((self.verts[i], self.verts[j]))
if (self.verts[j], self.verts[i]) in self.all_edges:
self.all_edges.remove((self.verts[j], self.verts[i]))
if j in self.linked_verts[i]:
self.linked_verts[i].remove(j)
if i in self.linked_verts[j]:
self.linked_verts[j].remove(i)
def to_pydata(self):
verts = [vert for vert in self.verts if vert is not None]
lut = dict((vert, idx) for idx, vert in enumerate(verts))
#info(lut)
edges = []
for v1, v2 in self.all_edges:
i1 = lut.get(v1, None)
i2 = lut.get(v2, None)
#info("Get: %s (%s) => %s (%s)", v1, i1, v2, i2)
if i1 is not None and i2 is not None and i1 != i2:
edges.append((i1, i2))
return verts, edges
class BoxBounds(Bounds):
def contains(self, p, edge_ok = True):
x, y = tuple(p)
if edge_ok:
return (self.x_min <= x <= self.x_max) and (self.y_min <= y <= self.y_max)
else:
return (self.x_min < x < self.x_max) and (self.y_min < y < self.y_max)
@property
def edges(self):
v1 = (self.x_min, self.y_min)
v2 = (self.x_min, self.y_max)
v3 = (self.x_max, self.y_max)
v4 = (self.x_max, self.y_min)
e1 = (v1, v2)
e2 = (v2, v3)
e3 = (v3, v4)
e4 = (v4, v1)
return [e1, e2, e3, e4]
def segment_intersection(self, p1, p2):
if not isinstance(p1, Vector):
p1 = Vector(p1)
if not isinstance(p2, Vector):
p2 = Vector(p2)
min_r = BIG_FLOAT
nearest = None
for v_i, v_j in self.edges:
intersection = intersect_line_line_2d(p1, p2, v_i, v_j)
if intersection is not None:
r = (p1 - intersection).length
if r < min_r:
nearest = intersection
min_r = r
return nearest
def ray_intersection(self, p, line):
p = Vector(center(line.sites))
min_r = BIG_FLOAT
nearest = None
for v_i, v_j in self.edges:
bound = LineEquation2D.from_two_points(v_i, v_j)
intersection = bound.intersect_with_line(line)
if intersection is not None:
r = (p - intersection).length
#info("INT: [%s - %s] X [%s] => %s (%s)", v_i, v_j, line, intersection, r)
if r < min_r:
nearest = intersection
min_r = r
return nearest
def line_intersection(self, line):
result = []
eps = 1e-8
for v_i, v_j in self.edges:
bound = LineEquation2D.from_two_points(v_i, v_j)
intersection = bound.intersect_with_line(line)
if intersection is not None:
x,y = tuple(intersection)
if (self.x_min-eps <= x <= self.x_max+eps) and (self.y_min-eps <= y <= self.y_max+eps):
result.append(intersection)
return result
def restrict(self, point):
def chop(t, m, M):
return min(max(t, m), M)
x, y, z = tuple(point)
x = chop(x, self.x_min, self.x_max)
y = chop(y, self.y_min, self.y_max)
return x,y,z
def project(self, point):
x, y, z = tuple(point)
mid_x = 0.5*(self.x_min + self.x_max)
mid_y = 0.5*(self.y_min + self.y_max)
if x > mid_x:
x = self.x_max
else:
x = self.x_min
if y > mid_y:
y = self.y_max
else:
y = self.y_min
return x, y, z
class CircleBounds(Bounds):
@property
def circle(self):
return CircleEquation2D(self.center, self.r_max)
def contains(self, p, edge_ok=True):
return self.circle.contains(p, include_bound=edge_ok)
def segment_intersection(self, p1, p2):
r = self.circle.intersect_with_segment(p1, p2)
if r is None:
return None
if r[0] is None and r[1] is None:
return None
if r[0] is not None:
return r[0]
if r[1] is not None:
return r[1]
def ray_intersection(self, p, line):
p = Vector(center(line.sites))
intersection = self.circle.intersect_with_line(line)
#info("RI: {line} X {self.circle} => {intersection}")
if intersection is None:
return None
else:
v1, v2 = intersection
r1 = (p - v1).length
r2 = (p - v2).length
if r1 < r2:
return v1
else:
return v2
def line_intersection(self, line):
intersection = self.circle.intersect_with_line(line)
return intersection
def restrict(self, point):
pt2d = (point[0], point[1])
if self.contains(pt2d):
return point
else:
v = self.circle.projection_of_point(Vector(pt2d), nearest=True)
x,y = tuple(v)
return x,y,0
def project(self, point):
pt2d = (point[0], point[1])
v = self.circle.projection_of_point(Vector(pt2d), nearest=True)
x,y = tuple(v)
return x,y,0
def voronoi_bounded(sites, bound_mode='BOX', clip=True, draw_bounds=True, draw_hangs=False, make_faces=False, ordered_faces=False, max_sides=10):
bounds = Bounds.new(bound_mode)
bounds.init_from_sites(sites)
source_sites = []
for x, y, z in sites:
source_sites.append(Site(x, y))
delta = clip
bounds.x_max = bounds.x_max + delta
bounds.y_max = bounds.y_max + delta
bounds.x_min = bounds.x_min - delta
bounds.y_min = bounds.y_min - delta
bounds.r_max = bounds.r_max + delta
voronoi_data = computeVoronoiDiagram(source_sites, raise_exception=True)
verts = voronoi_data.vertices
lines = voronoi_data.lines
all_edges = voronoi_data.edges
finite_edges = [(edge[1], edge[2]) for edge in all_edges if -1 not in edge]
bm = Mesh2D.from_pydata(verts, finite_edges)
# clipping box to bounding box.
verts_to_remove = set()
edges_to_remove = set()
bounding_verts = []
# For each diagram vertex that is outside of the bounds,
# cut each edge connected with that vertex by bounding line.
# Remove such vertices, remove such edges, and instead add
# vertices lying on the bounding line and corresponding edges.
for vert_idx, vert in enumerate(bm.verts[:]):
x, y = tuple(vert)
if not bounds.contains((x,y)):
verts_to_remove.add(vert_idx)
for other_vert_idx in list(bm.linked_verts[vert_idx]):
edges_to_remove.add((vert_idx, other_vert_idx))
if draw_hangs or draw_bounds:
other_vert = bm.verts[other_vert_idx]
if other_vert is not None:
x2, y2 = tuple(other_vert)
intersection = bounds.segment_intersection((x,y), (x2,y2))
if intersection is not None:
intersection = tuple(intersection)
new_vert_idx = bm.new_vert(intersection)
bounding_verts.append(new_vert_idx)
#info("CLIP: Added point: %s => %s", (x_i, y_i), new_vert_idx)
bm.new_edge(other_vert_idx, new_vert_idx)
# Diagram lines that go infinitely from one side of diagram to another
infinite_lines = []
# Lines that start at the one vertex of the diagram and go to infinity
rays = defaultdict(list)
if draw_hangs or draw_bounds:
sites_by_line = defaultdict(list)
for site_idx in voronoi_data.polygons.keys():
for line_index, i1, i2 in voronoi_data.polygons[site_idx]:
if i1 == -1 or i2 == -1:
site = source_sites[site_idx]
sites_by_line[line_index].append((site.x, site.y))
for line_index, i1, i2 in all_edges:
if i1 == -1 or i2 == -1:
line = lines[line_index]
a, b, c = line
eqn = LineEquation2D(a, b, -c)
if i1 == -1 and i2 != -1:
eqn.sites = sites_by_line[line_index]
rays[i2].append(eqn)
elif i2 == -1 and i1 != -1:
eqn.sites = sites_by_line[line_index]
rays[i1].append(eqn)
elif i1 == -1 and i2 == -1:
infinite_lines.append(eqn)
# For each (half-infinite) ray, calculate it's intersection
# with the bounding line and draw an edge from ray's beginning to
# the bounding line.
# NB: The data returned from voronoi.py for such lines
# is a vertex and a line equation. The line obviously intersects
# the bounding line in two points; which one should we choose?
# Let's choose that one which is closer to site points which the
# line is dividing.
for vert_index in rays.keys():
x,y = bm.verts[vert_index]
vert = Vector((x,y))
if vert_index not in verts_to_remove:
for line in rays[vert_index]:
intersection = bounds.ray_intersection(vert, line)
intersection = tuple(intersection)
new_vert_idx = bm.new_vert(intersection)
bounding_verts.append(new_vert_idx)
#info("INF: Added point: %s: %s => %s", (x,y), (x_i, y_i), new_vert_idx)
bm.new_edge(vert_index, new_vert_idx)
# For each infinite (in two directions) line,
# calculate two it's intersections with the bounding
# line and connect them by an edge.
for eqn in infinite_lines:
intersections = bounds.line_intersection(eqn)
if len(intersections) == 2:
v1, v2 = intersections
new_vert_1_idx = bm.new_vert(tuple(v1))
new_vert_2_idx = bm.new_vert(tuple(v2))
bounding_verts.append(new_vert_1_idx)
bounding_verts.append(new_vert_2_idx)
bm.new_edge(new_vert_1_idx, new_vert_2_idx)
elif len(intersections) == 1:
v = intersections[0]
new_vert_idx = bm.new_vert(tuple(v))
bounding_verts.append(new_vert_idx)
else:
sv_logger.error("unexpected number of intersections of infinite line %s with area bounds %s: %s", eqn, bounds, intersections)
# TODO: there could be (finite) edges, which have both ends
# outside of the bounding line. We could detect such edges and
# process similarly to infinite lines - calculate two intersections
# with the bounding line and connect them by an edge.
# Currently I consider such cases as rare, so this is a low priority issue.
# Btw, such edges do not fall under definition of either "bounding edge"
# or "hanging edge"; so should we add a separate checkbox for such edges?...
if draw_bounds and bounding_verts:
bounding_verts.sort(key = lambda idx: atan2(bm.verts[idx][1], bm.verts[idx][0]))
for i, j in zip(bounding_verts, bounding_verts[1:]):
bm.new_edge(i, j)
bm.new_edge(bounding_verts[-1], bounding_verts[0])
for i, j in edges_to_remove:
bm.remove_edge(i, j)
for vert_idx in verts_to_remove:
bm.verts[vert_idx] = None
verts, edges = bm.to_pydata()
new_vertices = [(vert[0], vert[1], 0) for vert in verts]
if make_faces:
for i,j in edges:
if i==j:
print(i,j)
bm = bmesh_from_pydata(new_vertices, edges, [])
bmesh.ops.holes_fill(bm, edges=bm.edges[:], sides=max_sides)
new_vertices, edges, new_faces = pydata_from_bmesh(bm)
bm.free()
if ordered_faces:
bvh = BVHTree.FromPolygons(new_vertices, new_faces)
face_by_site = dict()
for site_idx, site in enumerate(sites):
loc, normal, index, distance = bvh.find_nearest(site)
if index is not None:
face_by_site[site_idx] = index
r = []
for i in range(len(sites)):
if i not in face_by_site:
raise Exception(f"Can't find a face for site #{i}")
face_idx = face_by_site[i]
face = new_faces[face_idx]
r.append(face)
new_faces = r
else:
new_faces = []
return new_vertices, edges, new_faces
def unique_points(points, eps=1e-4):
kdt = KDTree(len(points))
for i, p in enumerate(points):
kdt.insert(p, i)
kdt.balance()
unique = []
repeating = []
mask = []
for p in points:
found = kdt.find_n(p, 2)
if len(found) > 1:
loc, idx, distance = found[1]
ok = distance > eps
mask.append(ok)
if ok:
unique.append(p)
else:
repeating.append(p)
return mask, unique, repeating
def lloyd2d(bound_mode, verts, n_iterations, clip=0.0, weight_field=None):
bounds = Bounds.new(bound_mode)
bounds.init_from_sites(verts)
def invert_points(pts):
result = []
for pt in pts:
pt2d = x0,y0 = (pt[0], pt[1])
if bounds.contains(pt2d, edge_ok=False):
x1,y1,z1 = bounds.project(pt)
if x1 == x0 and y1 == y0:
continue
x2 = x0 + 2*(x1-x0)
y2 = y0 + 2*(y1-y0)
out_pt = (x2, y2, z1)
result.append(out_pt)
return result
def iteration(pts):
mask, pts, repeating = unique_points(pts)
n = len(pts)
all_pts = pts + invert_points(pts)
voronoi_verts, _, voronoi_faces = voronoi_bounded(all_pts,
bound_mode = bound_mode,
clip = clip,
draw_bounds = True,
draw_hangs = True,
make_faces = True,
ordered_faces = True,
max_sides = 20)
centers = []
for face in voronoi_faces[:n]:
face_verts = np.array([voronoi_verts[i] for i in face])
new_pt = weighted_center(face_verts, weight_field)
centers.append(tuple(new_pt))
result = []
i = 0
j = 0
for is_unique in mask:
if is_unique:
result.append(centers[i])
i += 1
else:
result.append(repeating[j])
j += 1
return result
def restrict(pts):
return [bounds.restrict(pt) for pt in pts]
points = restrict(verts)
for i in range(n_iterations):
points = iteration(points)
points = restrict(points)
return points
Functions
def cmp(x, y)
-
Expand source code
def cmp(x,y): return x.__cmp__(y)
def computeDelaunayTriangulation(points)
-
Takes a list of point objects (which must have x and y fields). Returns a list of 3-tuples: the indices of the points that form a Delaunay triangle.
Expand source code
def computeDelaunayTriangulation(points): """ Takes a list of point objects (which must have x and y fields). Returns a list of 3-tuples: the indices of the points that form a Delaunay triangle. """ # original function in comment # siteList = SiteList(points) # context = Context() # context.triangulate = true # voronoi(siteList,context) # return context.triangles siteList = SiteList(points) context = Context() context.triangulate = True voronoi(siteList,context) return context.triangles
def computeVoronoiDiagram(points, raise_exception=False)
-
Takes a list of point objects (which must have x and y fields). Returns a Context object.
(1) context.vertices: a list of 2-tuples, which are the x,y coordinates of the Voronoi diagram vertices (2) context.lines: a list of 3-tuples (a,b,c) which are the equations of the lines in the Voronoi diagram: ax + by = c (3) context.edges: a list of 3-tuples, (l, v1, v2) representing edges of the Voronoi diagram. l is the index of the line, v1 and v2 are the indices of the vetices at the end of the edge. If v1 or v2 is -1, the line extends to infinity. (4) context.polygons: a dict of site:[edges] pairs
Expand source code
def computeVoronoiDiagram(points, raise_exception=False): """ Takes a list of point objects (which must have x and y fields). Returns a Context object. (1) context.vertices: a list of 2-tuples, which are the x,y coordinates of the Voronoi diagram vertices (2) context.lines: a list of 3-tuples (a,b,c) which are the equations of the lines in the Voronoi diagram: a*x + b*y = c (3) context.edges: a list of 3-tuples, (l, v1, v2) representing edges of the Voronoi diagram. l is the index of the line, v1 and v2 are the indices of the vetices at the end of the edge. If v1 or v2 is -1, the line extends to infinity. (4) context.polygons: a dict of site:[edges] pairs """ siteList = SiteList(points) context = Context() context.triangulate = True voronoi(siteList,context, raise_exception) return context
def isEqual(a, b, relativeError=1e-09)
-
Expand source code
def isEqual(a,b,relativeError=TOLERANCE): # is nearly equal to within the allowed relative error norm = max(abs(a),abs(b)) return (norm < relativeError) or (abs(a - b) < (relativeError * norm))
def lloyd2d(bound_mode, verts, n_iterations, clip=0.0, weight_field=None)
-
Expand source code
def lloyd2d(bound_mode, verts, n_iterations, clip=0.0, weight_field=None): bounds = Bounds.new(bound_mode) bounds.init_from_sites(verts) def invert_points(pts): result = [] for pt in pts: pt2d = x0,y0 = (pt[0], pt[1]) if bounds.contains(pt2d, edge_ok=False): x1,y1,z1 = bounds.project(pt) if x1 == x0 and y1 == y0: continue x2 = x0 + 2*(x1-x0) y2 = y0 + 2*(y1-y0) out_pt = (x2, y2, z1) result.append(out_pt) return result def iteration(pts): mask, pts, repeating = unique_points(pts) n = len(pts) all_pts = pts + invert_points(pts) voronoi_verts, _, voronoi_faces = voronoi_bounded(all_pts, bound_mode = bound_mode, clip = clip, draw_bounds = True, draw_hangs = True, make_faces = True, ordered_faces = True, max_sides = 20) centers = [] for face in voronoi_faces[:n]: face_verts = np.array([voronoi_verts[i] for i in face]) new_pt = weighted_center(face_verts, weight_field) centers.append(tuple(new_pt)) result = [] i = 0 j = 0 for is_unique in mask: if is_unique: result.append(centers[i]) i += 1 else: result.append(repeating[j]) j += 1 return result def restrict(pts): return [bounds.restrict(pt) for pt in pts] points = restrict(verts) for i in range(n_iterations): points = iteration(points) points = restrict(points) return points
def unique_points(points, eps=0.0001)
-
Expand source code
def unique_points(points, eps=1e-4): kdt = KDTree(len(points)) for i, p in enumerate(points): kdt.insert(p, i) kdt.balance() unique = [] repeating = [] mask = [] for p in points: found = kdt.find_n(p, 2) if len(found) > 1: loc, idx, distance = found[1] ok = distance > eps mask.append(ok) if ok: unique.append(p) else: repeating.append(p) return mask, unique, repeating
def usage()
-
Expand source code
def usage(): print(""" voronoi - compute Voronoi diagram or Delaunay triangulation voronoi [-t -p -d] [filename] Voronoi reads from filename (or standard input if no filename given) for a set of points in the plane and writes either the Voronoi diagram or the Delaunay triangulation to the standard output. Each input line should consist of two real numbers, separated by white space. If option -t is present, the Delaunay triangulation is produced. Each output line is a triple i j k, which are the indices of the three points in a Delaunay triangle. Points are numbered starting at 0. If option -t is not present, the Voronoi diagram is produced. There are four output record types. s a b indicates that an input point at coordinates a b was seen. l a b c indicates a line with equation ax + by = c. v a b indicates a vertex at a b. e l v1 v2 indicates a Voronoi segment which is a subsegment of line number l with endpoints numbered v1 and v2. If v1 or v2 is -1, the line extends to infinity. Other options include: d Print debugging info p Produce output suitable for input to plot (1), rather than the forms described above. On unsorted data uniformly distributed in the unit square, voronoi uses about 20n+140 bytes of storage. AUTHOR Steve J. Fortune (1987) A Sweepline Algorithm for Voronoi Diagrams, Algorithmica 2, 153-174. """)
def voronoi(siteList, context, raise_exception=False)
-
Expand source code
def voronoi(siteList,context, raise_exception=False): try: edgeList = EdgeList(siteList.xmin,siteList.xmax,len(siteList)) priorityQ = PriorityQueue(siteList.ymin,siteList.ymax,len(siteList)) siteIter = siteList.iterator() bottomsite = next(siteIter) context.outSite(bottomsite) newsite = next(siteIter) minpt = Site(-BIG_FLOAT,-BIG_FLOAT) while True: if not priorityQ.isEmpty(): minpt = priorityQ.getMinPt() if (newsite and (priorityQ.isEmpty() or cmp(newsite,minpt) < 0)): # newsite is smallest - this is a site event context.outSite(newsite) # get first Halfedge to the LEFT and RIGHT of the new site lbnd = edgeList.leftbnd(newsite) rbnd = lbnd.right # if this halfedge has no edge, bot = bottom site (whatever that is) # create a new edge that bisects bot = lbnd.rightreg(bottomsite) edge = Edge.bisect(bot,newsite) context.outBisector(edge) # create a new Halfedge, setting its pm field to 0 and insert # this new bisector edge between the left and right vectors in # a linked list bisector = Halfedge(edge,Edge.LE) edgeList.insert(lbnd,bisector) # if the new bisector intersects with the left edge, remove # the left edge's vertex, and put in the new one p = lbnd.intersect(bisector) if p is not None: priorityQ.delete(lbnd) priorityQ.insert(lbnd,p,newsite.distance(p)) # create a new Halfedge, setting its pm field to 1 # insert the new Halfedge to the right of the original bisector lbnd = bisector bisector = Halfedge(edge,Edge.RE) edgeList.insert(lbnd,bisector) # if this new bisector intersects with the right Halfedge p = bisector.intersect(rbnd) if p is not None: # push the Halfedge into the ordered linked list of vertices priorityQ.insert(bisector,p,newsite.distance(p)) newsite = next(siteIter) elif not priorityQ.isEmpty(): # intersection is smallest - this is a vector (circle) event # pop the Halfedge with the lowest vector off the ordered list of # vectors. Get the Halfedge to the left and right of the above HE # and also the Halfedge to the right of the right HE lbnd = priorityQ.popMinHalfedge() llbnd = lbnd.left rbnd = lbnd.right rrbnd = rbnd.right # get the Site to the left of the left HE and to the right of # the right HE which it bisects bot = lbnd.leftreg(bottomsite) top = rbnd.rightreg(bottomsite) # output the triple of sites, stating that a circle goes through them mid = lbnd.rightreg(bottomsite) context.outTriple(bot,top,mid) # get the vertex that caused this event and set the vertex number # couldn't do this earlier since we didn't know when it would be processed v = lbnd.vertex siteList.setSiteNumber(v) context.outVertex(v) # set the endpoint of the left and right Halfedge to be this vector if lbnd.edge.setEndpoint(lbnd.pm,v): context.outEdge(lbnd.edge) if rbnd.edge.setEndpoint(rbnd.pm,v): context.outEdge(rbnd.edge) # delete the lowest HE, remove all vertex events to do with the # right HE and delete the right HE edgeList.delete(lbnd) priorityQ.delete(rbnd) edgeList.delete(rbnd) # if the site to the left of the event is higher than the Site # to the right of it, then swap them and set 'pm' to RIGHT pm = Edge.LE if bot.y > top.y: bot,top = top,bot pm = Edge.RE # Create an Edge (or line) that is between the two Sites. This # creates the formula of the line, and assigns a line number to it edge = Edge.bisect(bot, top) context.outBisector(edge) # create a HE from the edge bisector = Halfedge(edge, pm) # insert the new bisector to the right of the left HE # set one endpoint to the new edge to be the vector point 'v' # If the site to the left of this bisector is higher than the right # Site, then this endpoint is put in position 0; otherwise in pos 1 edgeList.insert(llbnd, bisector) if edge.setEndpoint(Edge.RE - pm, v): context.outEdge(edge) # if left HE and the new bisector don't intersect, then delete # the left HE, and reinsert it p = llbnd.intersect(bisector) if p is not None: priorityQ.delete(llbnd); priorityQ.insert(llbnd, p, bot.distance(p)) # if right HE and the new bisector don't intersect, then reinsert it p = bisector.intersect(rrbnd) if p is not None: priorityQ.insert(bisector, p, bot.distance(p)) else: break he = edgeList.leftend.right while he is not edgeList.rightend: context.outEdge(he.edge) he = he.right Edge.EDGE_NUM = 0 except Exception as err: if raise_exception: raise err else: print("#Voronoi error#") print(str(err))
def voronoi_bounded(sites, bound_mode='BOX', clip=True, draw_bounds=True, draw_hangs=False, make_faces=False, ordered_faces=False, max_sides=10)
-
Expand source code
def voronoi_bounded(sites, bound_mode='BOX', clip=True, draw_bounds=True, draw_hangs=False, make_faces=False, ordered_faces=False, max_sides=10): bounds = Bounds.new(bound_mode) bounds.init_from_sites(sites) source_sites = [] for x, y, z in sites: source_sites.append(Site(x, y)) delta = clip bounds.x_max = bounds.x_max + delta bounds.y_max = bounds.y_max + delta bounds.x_min = bounds.x_min - delta bounds.y_min = bounds.y_min - delta bounds.r_max = bounds.r_max + delta voronoi_data = computeVoronoiDiagram(source_sites, raise_exception=True) verts = voronoi_data.vertices lines = voronoi_data.lines all_edges = voronoi_data.edges finite_edges = [(edge[1], edge[2]) for edge in all_edges if -1 not in edge] bm = Mesh2D.from_pydata(verts, finite_edges) # clipping box to bounding box. verts_to_remove = set() edges_to_remove = set() bounding_verts = [] # For each diagram vertex that is outside of the bounds, # cut each edge connected with that vertex by bounding line. # Remove such vertices, remove such edges, and instead add # vertices lying on the bounding line and corresponding edges. for vert_idx, vert in enumerate(bm.verts[:]): x, y = tuple(vert) if not bounds.contains((x,y)): verts_to_remove.add(vert_idx) for other_vert_idx in list(bm.linked_verts[vert_idx]): edges_to_remove.add((vert_idx, other_vert_idx)) if draw_hangs or draw_bounds: other_vert = bm.verts[other_vert_idx] if other_vert is not None: x2, y2 = tuple(other_vert) intersection = bounds.segment_intersection((x,y), (x2,y2)) if intersection is not None: intersection = tuple(intersection) new_vert_idx = bm.new_vert(intersection) bounding_verts.append(new_vert_idx) #info("CLIP: Added point: %s => %s", (x_i, y_i), new_vert_idx) bm.new_edge(other_vert_idx, new_vert_idx) # Diagram lines that go infinitely from one side of diagram to another infinite_lines = [] # Lines that start at the one vertex of the diagram and go to infinity rays = defaultdict(list) if draw_hangs or draw_bounds: sites_by_line = defaultdict(list) for site_idx in voronoi_data.polygons.keys(): for line_index, i1, i2 in voronoi_data.polygons[site_idx]: if i1 == -1 or i2 == -1: site = source_sites[site_idx] sites_by_line[line_index].append((site.x, site.y)) for line_index, i1, i2 in all_edges: if i1 == -1 or i2 == -1: line = lines[line_index] a, b, c = line eqn = LineEquation2D(a, b, -c) if i1 == -1 and i2 != -1: eqn.sites = sites_by_line[line_index] rays[i2].append(eqn) elif i2 == -1 and i1 != -1: eqn.sites = sites_by_line[line_index] rays[i1].append(eqn) elif i1 == -1 and i2 == -1: infinite_lines.append(eqn) # For each (half-infinite) ray, calculate it's intersection # with the bounding line and draw an edge from ray's beginning to # the bounding line. # NB: The data returned from voronoi.py for such lines # is a vertex and a line equation. The line obviously intersects # the bounding line in two points; which one should we choose? # Let's choose that one which is closer to site points which the # line is dividing. for vert_index in rays.keys(): x,y = bm.verts[vert_index] vert = Vector((x,y)) if vert_index not in verts_to_remove: for line in rays[vert_index]: intersection = bounds.ray_intersection(vert, line) intersection = tuple(intersection) new_vert_idx = bm.new_vert(intersection) bounding_verts.append(new_vert_idx) #info("INF: Added point: %s: %s => %s", (x,y), (x_i, y_i), new_vert_idx) bm.new_edge(vert_index, new_vert_idx) # For each infinite (in two directions) line, # calculate two it's intersections with the bounding # line and connect them by an edge. for eqn in infinite_lines: intersections = bounds.line_intersection(eqn) if len(intersections) == 2: v1, v2 = intersections new_vert_1_idx = bm.new_vert(tuple(v1)) new_vert_2_idx = bm.new_vert(tuple(v2)) bounding_verts.append(new_vert_1_idx) bounding_verts.append(new_vert_2_idx) bm.new_edge(new_vert_1_idx, new_vert_2_idx) elif len(intersections) == 1: v = intersections[0] new_vert_idx = bm.new_vert(tuple(v)) bounding_verts.append(new_vert_idx) else: sv_logger.error("unexpected number of intersections of infinite line %s with area bounds %s: %s", eqn, bounds, intersections) # TODO: there could be (finite) edges, which have both ends # outside of the bounding line. We could detect such edges and # process similarly to infinite lines - calculate two intersections # with the bounding line and connect them by an edge. # Currently I consider such cases as rare, so this is a low priority issue. # Btw, such edges do not fall under definition of either "bounding edge" # or "hanging edge"; so should we add a separate checkbox for such edges?... if draw_bounds and bounding_verts: bounding_verts.sort(key = lambda idx: atan2(bm.verts[idx][1], bm.verts[idx][0])) for i, j in zip(bounding_verts, bounding_verts[1:]): bm.new_edge(i, j) bm.new_edge(bounding_verts[-1], bounding_verts[0]) for i, j in edges_to_remove: bm.remove_edge(i, j) for vert_idx in verts_to_remove: bm.verts[vert_idx] = None verts, edges = bm.to_pydata() new_vertices = [(vert[0], vert[1], 0) for vert in verts] if make_faces: for i,j in edges: if i==j: print(i,j) bm = bmesh_from_pydata(new_vertices, edges, []) bmesh.ops.holes_fill(bm, edges=bm.edges[:], sides=max_sides) new_vertices, edges, new_faces = pydata_from_bmesh(bm) bm.free() if ordered_faces: bvh = BVHTree.FromPolygons(new_vertices, new_faces) face_by_site = dict() for site_idx, site in enumerate(sites): loc, normal, index, distance = bvh.find_nearest(site) if index is not None: face_by_site[site_idx] = index r = [] for i in range(len(sites)): if i not in face_by_site: raise Exception(f"Can't find a face for site #{i}") face_idx = face_by_site[i] face = new_faces[face_idx] r.append(face) new_faces = r else: new_faces = [] return new_vertices, edges, new_faces
Classes
class Bounds
-
Expand source code
class Bounds(object): def __init__(self): self.x_max = 0 self.y_max = 0 self.x_min = 0 self.y_min = 0 self.r_max = 0 self.center = (0,0) @classmethod def new(cls, mode): if mode == 'BOX': return BoxBounds() elif mode == 'CIRCLE': return CircleBounds() else: raise Exception("Unknown bounds type") def __repr__(self): return f"Bounds[C: {self.center}, R: {self.r_max}, X: {self.x_min} - {self.x_max}, Y: {self.y_min} - {self.y_max}]" def restrict(self, point): raise Exception("not implemented") def init_from_sites(self, sites): self.x_max = -BIG_FLOAT self.x_min = BIG_FLOAT self.y_min = BIG_FLOAT self.y_max = -BIG_FLOAT x0, y0, z0 = center(sites) self.center = (x0, y0) # creates points in format for voronoi library, throwing away z for x, y, z in sites: r = sqrt((x-x0)**2 + (y-y0)**2) self.r_max = max(r, self.r_max) self.x_max = max(x, self.x_max) self.x_min = min(x, self.x_min) self.y_max = max(y, self.y_max) self.y_min = min(y, self.y_min)
Subclasses
Static methods
def new(mode)
-
Expand source code
@classmethod def new(cls, mode): if mode == 'BOX': return BoxBounds() elif mode == 'CIRCLE': return CircleBounds() else: raise Exception("Unknown bounds type")
Methods
def init_from_sites(self, sites)
-
Expand source code
def init_from_sites(self, sites): self.x_max = -BIG_FLOAT self.x_min = BIG_FLOAT self.y_min = BIG_FLOAT self.y_max = -BIG_FLOAT x0, y0, z0 = center(sites) self.center = (x0, y0) # creates points in format for voronoi library, throwing away z for x, y, z in sites: r = sqrt((x-x0)**2 + (y-y0)**2) self.r_max = max(r, self.r_max) self.x_max = max(x, self.x_max) self.x_min = min(x, self.x_min) self.y_max = max(y, self.y_max) self.y_min = min(y, self.y_min)
def restrict(self, point)
-
Expand source code
def restrict(self, point): raise Exception("not implemented")
class BoxBounds
-
Expand source code
class BoxBounds(Bounds): def contains(self, p, edge_ok = True): x, y = tuple(p) if edge_ok: return (self.x_min <= x <= self.x_max) and (self.y_min <= y <= self.y_max) else: return (self.x_min < x < self.x_max) and (self.y_min < y < self.y_max) @property def edges(self): v1 = (self.x_min, self.y_min) v2 = (self.x_min, self.y_max) v3 = (self.x_max, self.y_max) v4 = (self.x_max, self.y_min) e1 = (v1, v2) e2 = (v2, v3) e3 = (v3, v4) e4 = (v4, v1) return [e1, e2, e3, e4] def segment_intersection(self, p1, p2): if not isinstance(p1, Vector): p1 = Vector(p1) if not isinstance(p2, Vector): p2 = Vector(p2) min_r = BIG_FLOAT nearest = None for v_i, v_j in self.edges: intersection = intersect_line_line_2d(p1, p2, v_i, v_j) if intersection is not None: r = (p1 - intersection).length if r < min_r: nearest = intersection min_r = r return nearest def ray_intersection(self, p, line): p = Vector(center(line.sites)) min_r = BIG_FLOAT nearest = None for v_i, v_j in self.edges: bound = LineEquation2D.from_two_points(v_i, v_j) intersection = bound.intersect_with_line(line) if intersection is not None: r = (p - intersection).length #info("INT: [%s - %s] X [%s] => %s (%s)", v_i, v_j, line, intersection, r) if r < min_r: nearest = intersection min_r = r return nearest def line_intersection(self, line): result = [] eps = 1e-8 for v_i, v_j in self.edges: bound = LineEquation2D.from_two_points(v_i, v_j) intersection = bound.intersect_with_line(line) if intersection is not None: x,y = tuple(intersection) if (self.x_min-eps <= x <= self.x_max+eps) and (self.y_min-eps <= y <= self.y_max+eps): result.append(intersection) return result def restrict(self, point): def chop(t, m, M): return min(max(t, m), M) x, y, z = tuple(point) x = chop(x, self.x_min, self.x_max) y = chop(y, self.y_min, self.y_max) return x,y,z def project(self, point): x, y, z = tuple(point) mid_x = 0.5*(self.x_min + self.x_max) mid_y = 0.5*(self.y_min + self.y_max) if x > mid_x: x = self.x_max else: x = self.x_min if y > mid_y: y = self.y_max else: y = self.y_min return x, y, z
Ancestors
Instance variables
var edges
-
Expand source code
@property def edges(self): v1 = (self.x_min, self.y_min) v2 = (self.x_min, self.y_max) v3 = (self.x_max, self.y_max) v4 = (self.x_max, self.y_min) e1 = (v1, v2) e2 = (v2, v3) e3 = (v3, v4) e4 = (v4, v1) return [e1, e2, e3, e4]
Methods
def contains(self, p, edge_ok=True)
-
Expand source code
def contains(self, p, edge_ok = True): x, y = tuple(p) if edge_ok: return (self.x_min <= x <= self.x_max) and (self.y_min <= y <= self.y_max) else: return (self.x_min < x < self.x_max) and (self.y_min < y < self.y_max)
def line_intersection(self, line)
-
Expand source code
def line_intersection(self, line): result = [] eps = 1e-8 for v_i, v_j in self.edges: bound = LineEquation2D.from_two_points(v_i, v_j) intersection = bound.intersect_with_line(line) if intersection is not None: x,y = tuple(intersection) if (self.x_min-eps <= x <= self.x_max+eps) and (self.y_min-eps <= y <= self.y_max+eps): result.append(intersection) return result
def project(self, point)
-
Expand source code
def project(self, point): x, y, z = tuple(point) mid_x = 0.5*(self.x_min + self.x_max) mid_y = 0.5*(self.y_min + self.y_max) if x > mid_x: x = self.x_max else: x = self.x_min if y > mid_y: y = self.y_max else: y = self.y_min return x, y, z
def ray_intersection(self, p, line)
-
Expand source code
def ray_intersection(self, p, line): p = Vector(center(line.sites)) min_r = BIG_FLOAT nearest = None for v_i, v_j in self.edges: bound = LineEquation2D.from_two_points(v_i, v_j) intersection = bound.intersect_with_line(line) if intersection is not None: r = (p - intersection).length #info("INT: [%s - %s] X [%s] => %s (%s)", v_i, v_j, line, intersection, r) if r < min_r: nearest = intersection min_r = r return nearest
def restrict(self, point)
-
Expand source code
def restrict(self, point): def chop(t, m, M): return min(max(t, m), M) x, y, z = tuple(point) x = chop(x, self.x_min, self.x_max) y = chop(y, self.y_min, self.y_max) return x,y,z
def segment_intersection(self, p1, p2)
-
Expand source code
def segment_intersection(self, p1, p2): if not isinstance(p1, Vector): p1 = Vector(p1) if not isinstance(p2, Vector): p2 = Vector(p2) min_r = BIG_FLOAT nearest = None for v_i, v_j in self.edges: intersection = intersect_line_line_2d(p1, p2, v_i, v_j) if intersection is not None: r = (p1 - intersection).length if r < min_r: nearest = intersection min_r = r return nearest
class CircleBounds
-
Expand source code
class CircleBounds(Bounds): @property def circle(self): return CircleEquation2D(self.center, self.r_max) def contains(self, p, edge_ok=True): return self.circle.contains(p, include_bound=edge_ok) def segment_intersection(self, p1, p2): r = self.circle.intersect_with_segment(p1, p2) if r is None: return None if r[0] is None and r[1] is None: return None if r[0] is not None: return r[0] if r[1] is not None: return r[1] def ray_intersection(self, p, line): p = Vector(center(line.sites)) intersection = self.circle.intersect_with_line(line) #info("RI: {line} X {self.circle} => {intersection}") if intersection is None: return None else: v1, v2 = intersection r1 = (p - v1).length r2 = (p - v2).length if r1 < r2: return v1 else: return v2 def line_intersection(self, line): intersection = self.circle.intersect_with_line(line) return intersection def restrict(self, point): pt2d = (point[0], point[1]) if self.contains(pt2d): return point else: v = self.circle.projection_of_point(Vector(pt2d), nearest=True) x,y = tuple(v) return x,y,0 def project(self, point): pt2d = (point[0], point[1]) v = self.circle.projection_of_point(Vector(pt2d), nearest=True) x,y = tuple(v) return x,y,0
Ancestors
Instance variables
var circle
-
Expand source code
@property def circle(self): return CircleEquation2D(self.center, self.r_max)
Methods
def contains(self, p, edge_ok=True)
-
Expand source code
def contains(self, p, edge_ok=True): return self.circle.contains(p, include_bound=edge_ok)
def line_intersection(self, line)
-
Expand source code
def line_intersection(self, line): intersection = self.circle.intersect_with_line(line) return intersection
def project(self, point)
-
Expand source code
def project(self, point): pt2d = (point[0], point[1]) v = self.circle.projection_of_point(Vector(pt2d), nearest=True) x,y = tuple(v) return x,y,0
def ray_intersection(self, p, line)
-
Expand source code
def ray_intersection(self, p, line): p = Vector(center(line.sites)) intersection = self.circle.intersect_with_line(line) #info("RI: {line} X {self.circle} => {intersection}") if intersection is None: return None else: v1, v2 = intersection r1 = (p - v1).length r2 = (p - v2).length if r1 < r2: return v1 else: return v2
def restrict(self, point)
-
Expand source code
def restrict(self, point): pt2d = (point[0], point[1]) if self.contains(pt2d): return point else: v = self.circle.projection_of_point(Vector(pt2d), nearest=True) x,y = tuple(v) return x,y,0
def segment_intersection(self, p1, p2)
-
Expand source code
def segment_intersection(self, p1, p2): r = self.circle.intersect_with_segment(p1, p2) if r is None: return None if r[0] is None and r[1] is None: return None if r[0] is not None: return r[0] if r[1] is not None: return r[1]
class Context
-
Expand source code
class Context(object): def __init__(self): self.doPrint = 0 self.debug = 0 self.plot = 0 self.triangulate = False self.vertices = [] # list of vertex 2-tuples: (x,y) self.lines = [] # equation of line 3-tuple (a b c), for the equation of the line a*x+b*y = c self.edges = [] # edge 3-tuple: (line index, vertex 1 index, vertex 2 index) if either vertex index is -1, the edge extends to infiinity self.triangles = [] # 3-tuple of vertex indices self.polygons = {} # a dict of site:[edges] pairs def circle(self,x,y,rad): pass def clip_line(self,edge): pass def line(self,x0,y0,x1,y1): pass def outSite(self,s): if(self.debug): print("site (%d) at %f %f" % (s.sitenum, s.x, s.y)) elif(self.triangulate): pass elif(self.plot): self.circle (s.x, s.y, cradius) elif(self.doPrint): print("s %f %f" % (s.x, s.y)) def outVertex(self,s): self.vertices.append((s.x,s.y)) if(self.debug): print("vertex(%d) at %f %f" % (s.sitenum, s.x, s.y)) elif(self.triangulate): pass elif(self.doPrint and not self.plot): print("v %f %f" % (s.x,s.y)) def outTriple(self,s1,s2,s3): self.triangles.append((s1.sitenum, s2.sitenum, s3.sitenum)) if(self.debug): print("circle through left=%d right=%d bottom=%d" % (s1.sitenum, s2.sitenum, s3.sitenum)) elif(self.triangulate and self.doPrint and not self.plot): print("%d %d %d" % (s1.sitenum, s2.sitenum, s3.sitenum)) def outBisector(self,edge): self.lines.append((edge.a, edge.b, edge.c)) if(self.debug): print("line(%d) %gx+%gy=%g, bisecting %d %d" % (edge.edgenum, edge.a, edge.b, edge.c, edge.reg[0].sitenum, edge.reg[1].sitenum)) elif(self.triangulate): if(self.plot): self.line(edge.reg[0].x, edge.reg[0].y, edge.reg[1].x, edge.reg[1].y) elif(self.doPrint and not self.plot): print("l %f %f %f" % (edge.a, edge.b, edge.c)) def outEdge(self,edge): sitenumL = -1 if edge.ep[Edge.LE] is not None: sitenumL = edge.ep[Edge.LE].sitenum sitenumR = -1 if edge.ep[Edge.RE] is not None: sitenumR = edge.ep[Edge.RE].sitenum if edge.reg[0].sitenum not in self.polygons: self.polygons[edge.reg[0].sitenum] = [] if edge.reg[1].sitenum not in self.polygons: self.polygons[edge.reg[1].sitenum] = [] self.polygons[edge.reg[0].sitenum].append((edge.edgenum,sitenumL,sitenumR)) self.polygons[edge.reg[1].sitenum].append((edge.edgenum,sitenumL,sitenumR)) self.edges.append((edge.edgenum,sitenumL,sitenumR)) if(not self.triangulate): if self.plot: self.clip_line(edge) elif(self.doPrint): print("e %d" % edge.edgenum, end=' ') print(" %d " % sitenumL, end=' ') print("%d" % sitenumR)
Methods
def circle(self, x, y, rad)
-
Expand source code
def circle(self,x,y,rad): pass
def clip_line(self, edge)
-
Expand source code
def clip_line(self,edge): pass
def line(self, x0, y0, x1, y1)
-
Expand source code
def line(self,x0,y0,x1,y1): pass
def outBisector(self, edge)
-
Expand source code
def outBisector(self,edge): self.lines.append((edge.a, edge.b, edge.c)) if(self.debug): print("line(%d) %gx+%gy=%g, bisecting %d %d" % (edge.edgenum, edge.a, edge.b, edge.c, edge.reg[0].sitenum, edge.reg[1].sitenum)) elif(self.triangulate): if(self.plot): self.line(edge.reg[0].x, edge.reg[0].y, edge.reg[1].x, edge.reg[1].y) elif(self.doPrint and not self.plot): print("l %f %f %f" % (edge.a, edge.b, edge.c))
def outEdge(self, edge)
-
Expand source code
def outEdge(self,edge): sitenumL = -1 if edge.ep[Edge.LE] is not None: sitenumL = edge.ep[Edge.LE].sitenum sitenumR = -1 if edge.ep[Edge.RE] is not None: sitenumR = edge.ep[Edge.RE].sitenum if edge.reg[0].sitenum not in self.polygons: self.polygons[edge.reg[0].sitenum] = [] if edge.reg[1].sitenum not in self.polygons: self.polygons[edge.reg[1].sitenum] = [] self.polygons[edge.reg[0].sitenum].append((edge.edgenum,sitenumL,sitenumR)) self.polygons[edge.reg[1].sitenum].append((edge.edgenum,sitenumL,sitenumR)) self.edges.append((edge.edgenum,sitenumL,sitenumR)) if(not self.triangulate): if self.plot: self.clip_line(edge) elif(self.doPrint): print("e %d" % edge.edgenum, end=' ') print(" %d " % sitenumL, end=' ') print("%d" % sitenumR)
def outSite(self, s)
-
Expand source code
def outSite(self,s): if(self.debug): print("site (%d) at %f %f" % (s.sitenum, s.x, s.y)) elif(self.triangulate): pass elif(self.plot): self.circle (s.x, s.y, cradius) elif(self.doPrint): print("s %f %f" % (s.x, s.y))
def outTriple(self, s1, s2, s3)
-
Expand source code
def outTriple(self,s1,s2,s3): self.triangles.append((s1.sitenum, s2.sitenum, s3.sitenum)) if(self.debug): print("circle through left=%d right=%d bottom=%d" % (s1.sitenum, s2.sitenum, s3.sitenum)) elif(self.triangulate and self.doPrint and not self.plot): print("%d %d %d" % (s1.sitenum, s2.sitenum, s3.sitenum))
def outVertex(self, s)
-
Expand source code
def outVertex(self,s): self.vertices.append((s.x,s.y)) if(self.debug): print("vertex(%d) at %f %f" % (s.sitenum, s.x, s.y)) elif(self.triangulate): pass elif(self.doPrint and not self.plot): print("v %f %f" % (s.x,s.y))
class Edge
-
Expand source code
class Edge(object): LE = 0 RE = 1 EDGE_NUM = 0 DELETED = {} # marker value def __init__(self): self.a = 0.0 self.b = 0.0 self.c = 0.0 self.ep = [None,None] self.reg = [None,None] self.edgenum = 0 def dump(self): print("(#%d a=%g, b=%g, c=%g)" % (self.edgenum,self.a,self.b,self.c)) print("ep",self.ep) print("reg",self.reg) def setEndpoint(self, lrFlag, site): self.ep[lrFlag] = site if self.ep[Edge.RE - lrFlag] is None: return False return True @staticmethod def bisect(s1,s2): newedge = Edge() newedge.reg[0] = s1 # store the sites that this edge is bisecting newedge.reg[1] = s2 # to begin with, there are no endpoints on the bisector - it goes to infinity # ep[0] and ep[1] are None # get the difference in x dist between the sites dx = float(s2.x - s1.x) dy = float(s2.y - s1.y) adx = abs(dx) # make sure that the difference in positive ady = abs(dy) # get the slope of the line newedge.c = float(s1.x * dx + s1.y * dy + (dx*dx + dy*dy)*0.5) if dx == 0 and dy == 0: raise Exception(f"Can't build an edge: two points are coinciding: {s1.sitenum}, {s2.sitenum}") if adx > ady : # set formula of line, with x fixed to 1 newedge.a = 1.0 newedge.b = dy/dx newedge.c /= dx else: # set formula of line, with y fixed to 1 newedge.b = 1.0 newedge.a = dx/dy newedge.c /= dy newedge.edgenum = Edge.EDGE_NUM Edge.EDGE_NUM += 1 return newedge
Class variables
var DELETED
var EDGE_NUM
var LE
var RE
Static methods
def bisect(s1, s2)
-
Expand source code
@staticmethod def bisect(s1,s2): newedge = Edge() newedge.reg[0] = s1 # store the sites that this edge is bisecting newedge.reg[1] = s2 # to begin with, there are no endpoints on the bisector - it goes to infinity # ep[0] and ep[1] are None # get the difference in x dist between the sites dx = float(s2.x - s1.x) dy = float(s2.y - s1.y) adx = abs(dx) # make sure that the difference in positive ady = abs(dy) # get the slope of the line newedge.c = float(s1.x * dx + s1.y * dy + (dx*dx + dy*dy)*0.5) if dx == 0 and dy == 0: raise Exception(f"Can't build an edge: two points are coinciding: {s1.sitenum}, {s2.sitenum}") if adx > ady : # set formula of line, with x fixed to 1 newedge.a = 1.0 newedge.b = dy/dx newedge.c /= dx else: # set formula of line, with y fixed to 1 newedge.b = 1.0 newedge.a = dx/dy newedge.c /= dy newedge.edgenum = Edge.EDGE_NUM Edge.EDGE_NUM += 1 return newedge
Methods
def dump(self)
-
Expand source code
def dump(self): print("(#%d a=%g, b=%g, c=%g)" % (self.edgenum,self.a,self.b,self.c)) print("ep",self.ep) print("reg",self.reg)
def setEndpoint(self, lrFlag, site)
-
Expand source code
def setEndpoint(self, lrFlag, site): self.ep[lrFlag] = site if self.ep[Edge.RE - lrFlag] is None: return False return True
class EdgeList (xmin, xmax, nsites)
-
Expand source code
class EdgeList(object): def __init__(self,xmin,xmax,nsites): if xmin > xmax: xmin,xmax = xmax,xmin self.hashsize = int(2*math.sqrt(nsites+4)) self.xmin = xmin self.deltax = float(xmax - xmin) self.hash = [None]*self.hashsize self.leftend = Halfedge() self.rightend = Halfedge() self.leftend.right = self.rightend self.rightend.left = self.leftend self.hash[0] = self.leftend self.hash[-1] = self.rightend def insert(self,left,he): he.left = left he.right = left.right left.right.left = he left.right = he def delete(self,he): he.left.right = he.right he.right.left = he.left he.edge = Edge.DELETED # Get entry from hash table, pruning any deleted nodes def gethash(self,b): if(b < 0 or b >= self.hashsize): return None he = self.hash[b] if he is None or he.edge is not Edge.DELETED: return he # Hash table points to deleted half edge. Patch as necessary. self.hash[b] = None return None def leftbnd(self,pt): # Use hash table to get close to desired halfedge bucket = int(((pt.x - self.xmin)/self.deltax * self.hashsize)) if(bucket < 0): bucket =0; if(bucket >=self.hashsize): bucket = self.hashsize-1 he = self.gethash(bucket) if(he is None): i = 1 while True: he = self.gethash(bucket-i) if (he is not None): break; he = self.gethash(bucket+i) if (he is not None): break; i += 1 # Now search linear list of halfedges for the correct one if (he is self.leftend) or (he is not self.rightend and he.isPointRightOf(pt)): he = he.right while he is not self.rightend and he.isPointRightOf(pt): he = he.right he = he.left; else: he = he.left while (he is not self.leftend and not he.isPointRightOf(pt)): he = he.left # Update hash table and reference counts if(bucket > 0 and bucket < self.hashsize-1): self.hash[bucket] = he return he
Methods
def delete(self, he)
-
Expand source code
def delete(self,he): he.left.right = he.right he.right.left = he.left he.edge = Edge.DELETED
def gethash(self, b)
-
Expand source code
def gethash(self,b): if(b < 0 or b >= self.hashsize): return None he = self.hash[b] if he is None or he.edge is not Edge.DELETED: return he # Hash table points to deleted half edge. Patch as necessary. self.hash[b] = None return None
def insert(self, left, he)
-
Expand source code
def insert(self,left,he): he.left = left he.right = left.right left.right.left = he left.right = he
def leftbnd(self, pt)
-
Expand source code
def leftbnd(self,pt): # Use hash table to get close to desired halfedge bucket = int(((pt.x - self.xmin)/self.deltax * self.hashsize)) if(bucket < 0): bucket =0; if(bucket >=self.hashsize): bucket = self.hashsize-1 he = self.gethash(bucket) if(he is None): i = 1 while True: he = self.gethash(bucket-i) if (he is not None): break; he = self.gethash(bucket+i) if (he is not None): break; i += 1 # Now search linear list of halfedges for the correct one if (he is self.leftend) or (he is not self.rightend and he.isPointRightOf(pt)): he = he.right while he is not self.rightend and he.isPointRightOf(pt): he = he.right he = he.left; else: he = he.left while (he is not self.leftend and not he.isPointRightOf(pt)): he = he.left # Update hash table and reference counts if(bucket > 0 and bucket < self.hashsize-1): self.hash[bucket] = he return he
class Halfedge (edge=None, pm=0)
-
Expand source code
class Halfedge(object): def __init__(self,edge=None,pm=Edge.LE): self.left = None # left Halfedge in the edge list self.right = None # right Halfedge in the edge list self.qnext = None # priority queue linked list pointer self.edge = edge # edge list Edge self.pm = pm self.vertex = None # Site() self.ystar = BIG_FLOAT def dump(self): print("Halfedge--------------------------") print("left: ", self.left) print("right: ", self.right) print("edge: ", self.edge) print("pm: ", self.pm) print("vertex: ", end=' ') if self.vertex: self.vertex.dump() else: print("None") print("ystar: ", self.ystar) def __cmp__(self,other): if self.ystar > other.ystar: return 1 elif self.ystar < other.ystar: return -1 elif self.vertex.x > other.vertex.x: return 1 elif self.vertex.x < other.vertex.x: return -1 else: return 0 def leftreg(self,default): if not self.edge: return default elif self.pm == Edge.LE: return self.edge.reg[Edge.LE] else: return self.edge.reg[Edge.RE] def rightreg(self,default): if not self.edge: return default elif self.pm == Edge.LE: return self.edge.reg[Edge.RE] else: return self.edge.reg[Edge.LE] # returns True if p is to right of halfedge self def isPointRightOf(self,pt): e = self.edge topsite = e.reg[1] right_of_site = pt.x > topsite.x if(right_of_site and self.pm == Edge.LE): return True if(not right_of_site and self.pm == Edge.RE): return False if(e.a == 1.0): dyp = pt.y - topsite.y dxp = pt.x - topsite.x fast = 0; if ((not right_of_site and e.b < 0.0) or (right_of_site and e.b >= 0.0)): above = dyp >= e.b * dxp fast = above else: above = pt.x + pt.y * e.b > e.c if(e.b < 0.0): above = not above if (not above): fast = 1 if (not fast): dxs = topsite.x - (e.reg[0]).x above = e.b * (dxp*dxp - dyp*dyp) < dxs*dyp*(1.0+2.0*dxp/dxs + e.b*e.b) if(e.b < 0.0): above = not above else: # e.b == 1.0 yl = e.c - e.a * pt.x t1 = pt.y - yl t2 = pt.x - topsite.x t3 = yl - topsite.y above = t1*t1 > t2*t2 + t3*t3 if(self.pm==Edge.LE): return above else: return not above #-------------------------- # create a new site where the Halfedges el1 and el2 intersect def intersect(self,other): e1 = self.edge e2 = other.edge if (e1 is None) or (e2 is None): return None # if the two edges bisect the same parent return None if e1.reg[1] is e2.reg[1]: return None d = e1.a * e2.b - e1.b * e2.a if isEqual(d,0.0): return None xint = (e1.c*e2.b - e2.c*e1.b) / d yint = (e2.c*e1.a - e1.c*e2.a) / d if(cmp(e1.reg[1],e2.reg[1]) < 0): he = self e = e1 else: he = other e = e2 rightOfSite = xint >= e.reg[1].x if((rightOfSite and he.pm == Edge.LE) or (not rightOfSite and he.pm == Edge.RE)): return None # create a new site at the point of intersection - this is a new # vector event waiting to happen return Site(xint,yint)
Methods
def dump(self)
-
Expand source code
def dump(self): print("Halfedge--------------------------") print("left: ", self.left) print("right: ", self.right) print("edge: ", self.edge) print("pm: ", self.pm) print("vertex: ", end=' ') if self.vertex: self.vertex.dump() else: print("None") print("ystar: ", self.ystar)
def intersect(self, other)
-
Expand source code
def intersect(self,other): e1 = self.edge e2 = other.edge if (e1 is None) or (e2 is None): return None # if the two edges bisect the same parent return None if e1.reg[1] is e2.reg[1]: return None d = e1.a * e2.b - e1.b * e2.a if isEqual(d,0.0): return None xint = (e1.c*e2.b - e2.c*e1.b) / d yint = (e2.c*e1.a - e1.c*e2.a) / d if(cmp(e1.reg[1],e2.reg[1]) < 0): he = self e = e1 else: he = other e = e2 rightOfSite = xint >= e.reg[1].x if((rightOfSite and he.pm == Edge.LE) or (not rightOfSite and he.pm == Edge.RE)): return None # create a new site at the point of intersection - this is a new # vector event waiting to happen return Site(xint,yint)
def isPointRightOf(self, pt)
-
Expand source code
def isPointRightOf(self,pt): e = self.edge topsite = e.reg[1] right_of_site = pt.x > topsite.x if(right_of_site and self.pm == Edge.LE): return True if(not right_of_site and self.pm == Edge.RE): return False if(e.a == 1.0): dyp = pt.y - topsite.y dxp = pt.x - topsite.x fast = 0; if ((not right_of_site and e.b < 0.0) or (right_of_site and e.b >= 0.0)): above = dyp >= e.b * dxp fast = above else: above = pt.x + pt.y * e.b > e.c if(e.b < 0.0): above = not above if (not above): fast = 1 if (not fast): dxs = topsite.x - (e.reg[0]).x above = e.b * (dxp*dxp - dyp*dyp) < dxs*dyp*(1.0+2.0*dxp/dxs + e.b*e.b) if(e.b < 0.0): above = not above else: # e.b == 1.0 yl = e.c - e.a * pt.x t1 = pt.y - yl t2 = pt.x - topsite.x t3 = yl - topsite.y above = t1*t1 > t2*t2 + t3*t3 if(self.pm==Edge.LE): return above else: return not above
def leftreg(self, default)
-
Expand source code
def leftreg(self,default): if not self.edge: return default elif self.pm == Edge.LE: return self.edge.reg[Edge.LE] else: return self.edge.reg[Edge.RE]
def rightreg(self, default)
-
Expand source code
def rightreg(self,default): if not self.edge: return default elif self.pm == Edge.LE: return self.edge.reg[Edge.RE] else: return self.edge.reg[Edge.LE]
class Mesh2D
-
Expand source code
class Mesh2D(object): def __init__(self): self.verts = [] self.all_edges = set() self.linked_verts = defaultdict(set) self._next_vert = 0 @classmethod def from_pydata(cls, verts, edges): mesh = Mesh2D() for vert in verts: mesh.new_vert(vert) for i, j in edges: mesh.new_edge(i, j) return mesh def new_vert(self, vert): if vert is None: raise Exception("new_vert(None)") if vert[0] is None or vert[1] is None: raise Exception(f"new_vert({vert})") self.verts.append(vert) idx = self._next_vert self._next_vert += 1 return idx def new_edge(self, i, j): v1, v2 = self.verts[i], self.verts[j] #info("Add: %s (%s) => %s (%s)", i, v1, j, v2) self.all_edges.add((v1, v2)) self.linked_verts[i].add(j) self.linked_verts[j].add(i) def remove_edge(self, i, j): if (self.verts[i], self.verts[j]) in self.all_edges: self.all_edges.remove((self.verts[i], self.verts[j])) if (self.verts[j], self.verts[i]) in self.all_edges: self.all_edges.remove((self.verts[j], self.verts[i])) if j in self.linked_verts[i]: self.linked_verts[i].remove(j) if i in self.linked_verts[j]: self.linked_verts[j].remove(i) def to_pydata(self): verts = [vert for vert in self.verts if vert is not None] lut = dict((vert, idx) for idx, vert in enumerate(verts)) #info(lut) edges = [] for v1, v2 in self.all_edges: i1 = lut.get(v1, None) i2 = lut.get(v2, None) #info("Get: %s (%s) => %s (%s)", v1, i1, v2, i2) if i1 is not None and i2 is not None and i1 != i2: edges.append((i1, i2)) return verts, edges
Static methods
def from_pydata(verts, edges)
-
Expand source code
@classmethod def from_pydata(cls, verts, edges): mesh = Mesh2D() for vert in verts: mesh.new_vert(vert) for i, j in edges: mesh.new_edge(i, j) return mesh
Methods
def new_edge(self, i, j)
-
Expand source code
def new_edge(self, i, j): v1, v2 = self.verts[i], self.verts[j] #info("Add: %s (%s) => %s (%s)", i, v1, j, v2) self.all_edges.add((v1, v2)) self.linked_verts[i].add(j) self.linked_verts[j].add(i)
def new_vert(self, vert)
-
Expand source code
def new_vert(self, vert): if vert is None: raise Exception("new_vert(None)") if vert[0] is None or vert[1] is None: raise Exception(f"new_vert({vert})") self.verts.append(vert) idx = self._next_vert self._next_vert += 1 return idx
def remove_edge(self, i, j)
-
Expand source code
def remove_edge(self, i, j): if (self.verts[i], self.verts[j]) in self.all_edges: self.all_edges.remove((self.verts[i], self.verts[j])) if (self.verts[j], self.verts[i]) in self.all_edges: self.all_edges.remove((self.verts[j], self.verts[i])) if j in self.linked_verts[i]: self.linked_verts[i].remove(j) if i in self.linked_verts[j]: self.linked_verts[j].remove(i)
def to_pydata(self)
-
Expand source code
def to_pydata(self): verts = [vert for vert in self.verts if vert is not None] lut = dict((vert, idx) for idx, vert in enumerate(verts)) #info(lut) edges = [] for v1, v2 in self.all_edges: i1 = lut.get(v1, None) i2 = lut.get(v2, None) #info("Get: %s (%s) => %s (%s)", v1, i1, v2, i2) if i1 is not None and i2 is not None and i1 != i2: edges.append((i1, i2)) return verts, edges
class PriorityQueue (ymin, ymax, nsites)
-
Expand source code
class PriorityQueue(object): def __init__(self,ymin,ymax,nsites): self.ymin = ymin self.deltay = ymax - ymin self.hashsize = int(4 * math.sqrt(nsites)) self.count = 0 self.minidx = 0 self.hash = [] for i in range(self.hashsize): self.hash.append(Halfedge()) def __len__(self): return self.count def isEmpty(self): return self.count == 0 def insert(self,he,site,offset): he.vertex = site he.ystar = site.y + offset last = self.hash[self.getBucket(he)] next = last.qnext while((next is not None) and cmp(he,next) > 0): last = next next = last.qnext he.qnext = last.qnext last.qnext = he self.count += 1 def delete(self,he): if (he.vertex is not None): last = self.hash[self.getBucket(he)] while last.qnext is not he: last = last.qnext last.qnext = he.qnext self.count -= 1 he.vertex = None def getBucket(self,he): bucket = int(((he.ystar - self.ymin) / self.deltay) * self.hashsize) if bucket < 0: bucket = 0 if bucket >= self.hashsize: bucket = self.hashsize-1 if bucket < self.minidx: self.minidx = bucket return bucket def getMinPt(self): while(self.hash[self.minidx].qnext is None): self.minidx += 1 he = self.hash[self.minidx].qnext x = he.vertex.x y = he.ystar return Site(x,y) def popMinHalfedge(self): curr = self.hash[self.minidx].qnext self.hash[self.minidx].qnext = curr.qnext self.count -= 1 return curr
Methods
def delete(self, he)
-
Expand source code
def delete(self,he): if (he.vertex is not None): last = self.hash[self.getBucket(he)] while last.qnext is not he: last = last.qnext last.qnext = he.qnext self.count -= 1 he.vertex = None
def getBucket(self, he)
-
Expand source code
def getBucket(self,he): bucket = int(((he.ystar - self.ymin) / self.deltay) * self.hashsize) if bucket < 0: bucket = 0 if bucket >= self.hashsize: bucket = self.hashsize-1 if bucket < self.minidx: self.minidx = bucket return bucket
def getMinPt(self)
-
Expand source code
def getMinPt(self): while(self.hash[self.minidx].qnext is None): self.minidx += 1 he = self.hash[self.minidx].qnext x = he.vertex.x y = he.ystar return Site(x,y)
def insert(self, he, site, offset)
-
Expand source code
def insert(self,he,site,offset): he.vertex = site he.ystar = site.y + offset last = self.hash[self.getBucket(he)] next = last.qnext while((next is not None) and cmp(he,next) > 0): last = next next = last.qnext he.qnext = last.qnext last.qnext = he self.count += 1
def isEmpty(self)
-
Expand source code
def isEmpty(self): return self.count == 0
def popMinHalfedge(self)
-
Expand source code
def popMinHalfedge(self): curr = self.hash[self.minidx].qnext self.hash[self.minidx].qnext = curr.qnext self.count -= 1 return curr
class Site (x=0.0, y=0.0, sitenum=0)
-
Expand source code
class Site(object): def __init__(self,x=0.0,y=0.0,sitenum=0): self.x = x self.y = y self.sitenum = sitenum def dump(self): print("Site #%d (%g, %g)" % (self.sitenum,self.x,self.y)) def __lt__(self, other): if self.y < other.y: return 1 elif self.y > other.y: return 0 elif self.x < other.x: return 1 elif self.x > other.x: return 0 def __str__(self): return str((self.x,self.y)) def __cmp__(self,other): if self.y < other.y: return -1 elif self.y > other.y: return 1 elif self.x < other.x: return -1 elif self.x > other.x: return 1 else: return 0 def distance(self,other): dx = self.x - other.x dy = self.y - other.y return math.sqrt(dx*dx + dy*dy)
Methods
def distance(self, other)
-
Expand source code
def distance(self,other): dx = self.x - other.x dy = self.y - other.y return math.sqrt(dx*dx + dy*dy)
def dump(self)
-
Expand source code
def dump(self): print("Site #%d (%g, %g)" % (self.sitenum,self.x,self.y))
class SiteList (pointList)
-
Expand source code
class SiteList(object): def __init__(self,pointList): self.__sites = [] self.__sitenum = 0 self.__xmin = pointList[0].x self.__ymin = pointList[0].y self.__xmax = pointList[0].x self.__ymax = pointList[0].y for i,pt in enumerate(pointList): self.__sites.append(Site(pt.x,pt.y,i)) if pt.x < self.__xmin: self.__xmin = pt.x if pt.y < self.__ymin: self.__ymin = pt.y if pt.x > self.__xmax: self.__xmax = pt.x if pt.y > self.__ymax: self.__ymax = pt.y self.__sites.sort() def setSiteNumber(self,site): site.sitenum = self.__sitenum self.__sitenum += 1 class Iterator(object): def __init__(this,lst): this.generator = (s for s in lst) def __iter__(this): return this def __next__(this): try: return next(this.generator) except StopIteration: return None def iterator(self): return SiteList.Iterator(self.__sites) def __iter__(self): return SiteList.Iterator(self.__sites) def __len__(self): return len(self.__sites) def _getxmin(self): return self.__xmin def _getymin(self): return self.__ymin def _getxmax(self): return self.__xmax def _getymax(self): return self.__ymax xmin = property(_getxmin) ymin = property(_getymin) xmax = property(_getxmax) ymax = property(_getymax)
Class variables
var Iterator
Instance variables
var xmax
-
Expand source code
def _getxmax(self): return self.__xmax
var xmin
-
Expand source code
def _getxmin(self): return self.__xmin
var ymax
-
Expand source code
def _getymax(self): return self.__ymax
var ymin
-
Expand source code
def _getymin(self): return self.__ymin
Methods
def iterator(self)
-
Expand source code
def iterator(self): return SiteList.Iterator(self.__sites)
def setSiteNumber(self, site)
-
Expand source code
def setSiteNumber(self,site): site.sitenum = self.__sitenum self.__sitenum += 1