Module sverchok.utils.sv_extended_curve_utils

Expand source code
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

import math

import bpy
import mathutils
import bmesh
from mathutils import Vector
from mathutils.geometry import interpolate_bezier


def generate_edges(n_verts, cyclic):
    edges = [[i, i + 1] for i in range(n_verts - 1)]
    if cyclic:
        edges.append([n_verts-1, 0])
    return edges


def offset(edgekeys, amount):
    return [[edge[0] + amount, edge[1] + amount] for edge in edgekeys]

# --- lifted and modified from https://blender.stackexchange.com/a/689/47 (Brecht): 

def get_points_bezier(spline, clean=True, calc_radii=False):

    knots = spline.bezier_points
    cyclic = spline.use_cyclic_u

    if len(knots) < 2:
        return

    radii = []

    # verts per segment
    r = spline.resolution_u + 1

    # segments in spline
    segments = len(knots)
    if not cyclic:
        segments -= 1

    master_point_list = []
    for i in range(segments):
        inext = (i + 1) % len(knots)

        knot1, knot2 = knots[i].co, knots[inext].co
        handle1, handle2 = knots[i].handle_right, knots[inext].handle_left

        bezier = knot1, handle1, handle2, knot2, r
        points = interpolate_bezier(*bezier)

        if segments == 1 and not cyclic:
            pass
        elif cyclic or (i < segments-1):
            points.pop()

        master_point_list.extend([v[:] for v in points])

    edges = generate_edges(n_verts=len(master_point_list), cyclic=cyclic)

    return master_point_list, edges, radii


#### --- lifted and modified from https://blender.stackexchange.com/a/34276/47 (pink vertex)


def macro_knotsu(nu):
    return nu.order_u + nu.point_count_u + (nu.order_u - 1 if nu.use_cyclic_u else 0)

def macro_segmentsu(nu):
    return nu.point_count_u if nu.use_cyclic_u else nu.point_count_u - 1

def makeknots(nu):
    knots = [0.0] * (4 + macro_knotsu(nu))
    flag = nu.use_endpoint_u + (nu.use_bezier_u << 1)
    if nu.use_cyclic_u:
        calcknots(knots, nu.point_count_u, nu.order_u, 0)
        makecyclicknots(knots, nu.point_count_u, nu.order_u)
    else:
        calcknots(knots, nu.point_count_u, nu.order_u, flag)
    return knots

def calcknots(knots, pnts, order, flag):
    pnts_order = pnts + order
    if flag == 1:
        k = 0.0
        for a in range(1, pnts_order + 1):
            knots[a - 1] = k
            if a >= order and a <= pnts:
                k += 1.0
    elif flag == 2:
        if order == 4:
            k = 0.34
            for a in range(pnts_order):
                knots[a] = math.floor(k)
                k += (1.0 / 3.0)
        elif order == 3:
            k = 0.6
            for a in range(pnts_order):
                if a >= order and a <= pnts:
                    k += 0.5
                    knots[a] = math.floor(k)
    else:
        for a in range(pnts_order):
            knots[a] = a

def makecyclicknots(knots, pnts, order):
    order2 = order - 1

    if order > 2:
        b = pnts + order2
        for a in range(1, order2):
            if knots[b] != knots[b - a]:
                break

            if a == order2:
                knots[pnts + order - 2] += 1.0

    b = order
    c = pnts + order + order2
    for a in range(pnts + order2, c):
        knots[a] = knots[a - 1] + (knots[b] - knots[b - 1])
        b -= 1

def basisNurb(t, order, pnts, knots, basis, start, end):
    i1 = i2 = 0
    orderpluspnts = order + pnts
    opp2 = orderpluspnts - 1

    # this is for float inaccuracy
    if t < knots[0]:
        t = knots[0]
    elif t > knots[opp2]:
        t = knots[opp2]

    # this part is order '1'
    o2 = order + 1
    for i in range(opp2):
        if knots[i] != knots[i + 1] and t >= knots[i] and t <= knots[i + 1]:
            basis[i] = 1.0
            i1 = i - o2
            if i1 < 0:
                i1 = 0
            i2 = i
            i += 1
            while i < opp2:
                basis[i] = 0.0
                i += 1
            break

        else:
            basis[i] = 0.0

    basis[i] = 0.0

    # this is order 2, 3, ...
    for j in range(2, order + 1):

        if i2 + j >= orderpluspnts:
            i2 = opp2 - j

        for i in range(i1, i2 + 1):
            if basis[i] != 0.0:
                d = ((t - knots[i]) * basis[i]) / (knots[i + j - 1] - knots[i])
            else:
                d = 0.0

            if basis[i + 1] != 0.0:
                e = ((knots[i + j] - t) * basis[i + 1]) / (knots[i + j] - knots[i + 1])
            else:
                e = 0.0

            basis[i] = d + e

    start = 1000
    end = 0

    for i in range(i1, i2 + 1):
        if basis[i] > 0.0:
            end = i
            if start == 1000:
                start = i

    return start, end

def nurb_make_curve(nu, resolu, stride=3):
    EPS = 1e-6
    coord_index = istart = iend = 0

    coord_array = [0.0] * (3 * nu.resolution_u * macro_segmentsu(nu))
    sum_array = [0] * nu.point_count_u
    basisu = [0.0] * macro_knotsu(nu)
    knots = makeknots(nu)

    resolu = resolu * macro_segmentsu(nu)
    ustart = knots[nu.order_u - 1]
    uend   = knots[nu.point_count_u + nu.order_u - 1] if nu.use_cyclic_u else \
             knots[nu.point_count_u]
    ustep  = (uend - ustart) / (resolu - (0 if nu.use_cyclic_u else 1))
    cycl = nu.order_u - 1 if nu.use_cyclic_u else 0

    u = ustart
    while resolu:
        resolu -= 1
        istart, iend = basisNurb(u, nu.order_u, nu.point_count_u + cycl, knots, basisu, istart, iend)

        #/* calc sum */
        sumdiv = 0.0
        sum_index = 0
        pt_index = istart - 1
        for i in range(istart, iend + 1):
            pt_index = (i - nu.point_count_u) if i >= nu.point_count_u else (pt_index + 1)
            sum_array[sum_index] = basisu[i] * nu.points[pt_index].co[3]
            sumdiv += sum_array[sum_index]
            sum_index += 1

        if (sumdiv != 0.0) and (sumdiv < 1.0 - EPS or sumdiv > 1.0 + EPS):
            sum_index = 0
            for i in range(istart, iend + 1):
                sum_array[sum_index] /= sumdiv
                sum_index += 1

        coord_array[coord_index: coord_index + 3] = (0.0, 0.0, 0.0)

        sum_index = 0
        pt_index = istart - 1
        for i in range(istart, iend + 1):
            if i >= nu.point_count_u:
                pt_index = i - nu.point_count_u
            else:
                pt_index += 1

            if sum_array[sum_index] != 0.0:
                for j in range(3):
                    coord_array[coord_index + j] += sum_array[sum_index] * nu.points[pt_index].co[j]
            sum_index += 1

        coord_index += stride
        u += ustep

    return coord_array


def get_points_nurbs(spline, resolu, calc_radii=False):
    verts, edges, radii = [], [], []

    coord_array = nurb_make_curve(spline, resolu, stride=3)
    verts = [coord_array[i: i + 3] for i in range(0, len(coord_array), 3)]
    edges = generate_edges(n_verts=len(verts), cyclic=spline.use_cyclic_u)

    return verts, edges, radii

Functions

def basisNurb(t, order, pnts, knots, basis, start, end)
Expand source code
def basisNurb(t, order, pnts, knots, basis, start, end):
    i1 = i2 = 0
    orderpluspnts = order + pnts
    opp2 = orderpluspnts - 1

    # this is for float inaccuracy
    if t < knots[0]:
        t = knots[0]
    elif t > knots[opp2]:
        t = knots[opp2]

    # this part is order '1'
    o2 = order + 1
    for i in range(opp2):
        if knots[i] != knots[i + 1] and t >= knots[i] and t <= knots[i + 1]:
            basis[i] = 1.0
            i1 = i - o2
            if i1 < 0:
                i1 = 0
            i2 = i
            i += 1
            while i < opp2:
                basis[i] = 0.0
                i += 1
            break

        else:
            basis[i] = 0.0

    basis[i] = 0.0

    # this is order 2, 3, ...
    for j in range(2, order + 1):

        if i2 + j >= orderpluspnts:
            i2 = opp2 - j

        for i in range(i1, i2 + 1):
            if basis[i] != 0.0:
                d = ((t - knots[i]) * basis[i]) / (knots[i + j - 1] - knots[i])
            else:
                d = 0.0

            if basis[i + 1] != 0.0:
                e = ((knots[i + j] - t) * basis[i + 1]) / (knots[i + j] - knots[i + 1])
            else:
                e = 0.0

            basis[i] = d + e

    start = 1000
    end = 0

    for i in range(i1, i2 + 1):
        if basis[i] > 0.0:
            end = i
            if start == 1000:
                start = i

    return start, end
def calcknots(knots, pnts, order, flag)
Expand source code
def calcknots(knots, pnts, order, flag):
    pnts_order = pnts + order
    if flag == 1:
        k = 0.0
        for a in range(1, pnts_order + 1):
            knots[a - 1] = k
            if a >= order and a <= pnts:
                k += 1.0
    elif flag == 2:
        if order == 4:
            k = 0.34
            for a in range(pnts_order):
                knots[a] = math.floor(k)
                k += (1.0 / 3.0)
        elif order == 3:
            k = 0.6
            for a in range(pnts_order):
                if a >= order and a <= pnts:
                    k += 0.5
                    knots[a] = math.floor(k)
    else:
        for a in range(pnts_order):
            knots[a] = a
def generate_edges(n_verts, cyclic)
Expand source code
def generate_edges(n_verts, cyclic):
    edges = [[i, i + 1] for i in range(n_verts - 1)]
    if cyclic:
        edges.append([n_verts-1, 0])
    return edges
def get_points_bezier(spline, clean=True, calc_radii=False)
Expand source code
def get_points_bezier(spline, clean=True, calc_radii=False):

    knots = spline.bezier_points
    cyclic = spline.use_cyclic_u

    if len(knots) < 2:
        return

    radii = []

    # verts per segment
    r = spline.resolution_u + 1

    # segments in spline
    segments = len(knots)
    if not cyclic:
        segments -= 1

    master_point_list = []
    for i in range(segments):
        inext = (i + 1) % len(knots)

        knot1, knot2 = knots[i].co, knots[inext].co
        handle1, handle2 = knots[i].handle_right, knots[inext].handle_left

        bezier = knot1, handle1, handle2, knot2, r
        points = interpolate_bezier(*bezier)

        if segments == 1 and not cyclic:
            pass
        elif cyclic or (i < segments-1):
            points.pop()

        master_point_list.extend([v[:] for v in points])

    edges = generate_edges(n_verts=len(master_point_list), cyclic=cyclic)

    return master_point_list, edges, radii
def get_points_nurbs(spline, resolu, calc_radii=False)
Expand source code
def get_points_nurbs(spline, resolu, calc_radii=False):
    verts, edges, radii = [], [], []

    coord_array = nurb_make_curve(spline, resolu, stride=3)
    verts = [coord_array[i: i + 3] for i in range(0, len(coord_array), 3)]
    edges = generate_edges(n_verts=len(verts), cyclic=spline.use_cyclic_u)

    return verts, edges, radii
def macro_knotsu(nu)
Expand source code
def macro_knotsu(nu):
    return nu.order_u + nu.point_count_u + (nu.order_u - 1 if nu.use_cyclic_u else 0)
def macro_segmentsu(nu)
Expand source code
def macro_segmentsu(nu):
    return nu.point_count_u if nu.use_cyclic_u else nu.point_count_u - 1
def makecyclicknots(knots, pnts, order)
Expand source code
def makecyclicknots(knots, pnts, order):
    order2 = order - 1

    if order > 2:
        b = pnts + order2
        for a in range(1, order2):
            if knots[b] != knots[b - a]:
                break

            if a == order2:
                knots[pnts + order - 2] += 1.0

    b = order
    c = pnts + order + order2
    for a in range(pnts + order2, c):
        knots[a] = knots[a - 1] + (knots[b] - knots[b - 1])
        b -= 1
def makeknots(nu)
Expand source code
def makeknots(nu):
    knots = [0.0] * (4 + macro_knotsu(nu))
    flag = nu.use_endpoint_u + (nu.use_bezier_u << 1)
    if nu.use_cyclic_u:
        calcknots(knots, nu.point_count_u, nu.order_u, 0)
        makecyclicknots(knots, nu.point_count_u, nu.order_u)
    else:
        calcknots(knots, nu.point_count_u, nu.order_u, flag)
    return knots
def nurb_make_curve(nu, resolu, stride=3)
Expand source code
def nurb_make_curve(nu, resolu, stride=3):
    EPS = 1e-6
    coord_index = istart = iend = 0

    coord_array = [0.0] * (3 * nu.resolution_u * macro_segmentsu(nu))
    sum_array = [0] * nu.point_count_u
    basisu = [0.0] * macro_knotsu(nu)
    knots = makeknots(nu)

    resolu = resolu * macro_segmentsu(nu)
    ustart = knots[nu.order_u - 1]
    uend   = knots[nu.point_count_u + nu.order_u - 1] if nu.use_cyclic_u else \
             knots[nu.point_count_u]
    ustep  = (uend - ustart) / (resolu - (0 if nu.use_cyclic_u else 1))
    cycl = nu.order_u - 1 if nu.use_cyclic_u else 0

    u = ustart
    while resolu:
        resolu -= 1
        istart, iend = basisNurb(u, nu.order_u, nu.point_count_u + cycl, knots, basisu, istart, iend)

        #/* calc sum */
        sumdiv = 0.0
        sum_index = 0
        pt_index = istart - 1
        for i in range(istart, iend + 1):
            pt_index = (i - nu.point_count_u) if i >= nu.point_count_u else (pt_index + 1)
            sum_array[sum_index] = basisu[i] * nu.points[pt_index].co[3]
            sumdiv += sum_array[sum_index]
            sum_index += 1

        if (sumdiv != 0.0) and (sumdiv < 1.0 - EPS or sumdiv > 1.0 + EPS):
            sum_index = 0
            for i in range(istart, iend + 1):
                sum_array[sum_index] /= sumdiv
                sum_index += 1

        coord_array[coord_index: coord_index + 3] = (0.0, 0.0, 0.0)

        sum_index = 0
        pt_index = istart - 1
        for i in range(istart, iend + 1):
            if i >= nu.point_count_u:
                pt_index = i - nu.point_count_u
            else:
                pt_index += 1

            if sum_array[sum_index] != 0.0:
                for j in range(3):
                    coord_array[coord_index + j] += sum_array[sum_index] * nu.points[pt_index].co[j]
            sum_index += 1

        coord_index += stride
        u += ustep

    return coord_array
def offset(edgekeys, amount)
Expand source code
def offset(edgekeys, amount):
    return [[edge[0] + amount, edge[1] + amount] for edge in edgekeys]