Module sverchok.utils.sv_extended_curve_utils
Expand source code
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
import math
import bpy
import mathutils
import bmesh
from mathutils import Vector
from mathutils.geometry import interpolate_bezier
def generate_edges(n_verts, cyclic):
edges = [[i, i + 1] for i in range(n_verts - 1)]
if cyclic:
edges.append([n_verts-1, 0])
return edges
def offset(edgekeys, amount):
return [[edge[0] + amount, edge[1] + amount] for edge in edgekeys]
# --- lifted and modified from https://blender.stackexchange.com/a/689/47 (Brecht):
def get_points_bezier(spline, clean=True, calc_radii=False):
knots = spline.bezier_points
cyclic = spline.use_cyclic_u
if len(knots) < 2:
return
radii = []
# verts per segment
r = spline.resolution_u + 1
# segments in spline
segments = len(knots)
if not cyclic:
segments -= 1
master_point_list = []
for i in range(segments):
inext = (i + 1) % len(knots)
knot1, knot2 = knots[i].co, knots[inext].co
handle1, handle2 = knots[i].handle_right, knots[inext].handle_left
bezier = knot1, handle1, handle2, knot2, r
points = interpolate_bezier(*bezier)
if segments == 1 and not cyclic:
pass
elif cyclic or (i < segments-1):
points.pop()
master_point_list.extend([v[:] for v in points])
edges = generate_edges(n_verts=len(master_point_list), cyclic=cyclic)
return master_point_list, edges, radii
#### --- lifted and modified from https://blender.stackexchange.com/a/34276/47 (pink vertex)
def macro_knotsu(nu):
return nu.order_u + nu.point_count_u + (nu.order_u - 1 if nu.use_cyclic_u else 0)
def macro_segmentsu(nu):
return nu.point_count_u if nu.use_cyclic_u else nu.point_count_u - 1
def makeknots(nu):
knots = [0.0] * (4 + macro_knotsu(nu))
flag = nu.use_endpoint_u + (nu.use_bezier_u << 1)
if nu.use_cyclic_u:
calcknots(knots, nu.point_count_u, nu.order_u, 0)
makecyclicknots(knots, nu.point_count_u, nu.order_u)
else:
calcknots(knots, nu.point_count_u, nu.order_u, flag)
return knots
def calcknots(knots, pnts, order, flag):
pnts_order = pnts + order
if flag == 1:
k = 0.0
for a in range(1, pnts_order + 1):
knots[a - 1] = k
if a >= order and a <= pnts:
k += 1.0
elif flag == 2:
if order == 4:
k = 0.34
for a in range(pnts_order):
knots[a] = math.floor(k)
k += (1.0 / 3.0)
elif order == 3:
k = 0.6
for a in range(pnts_order):
if a >= order and a <= pnts:
k += 0.5
knots[a] = math.floor(k)
else:
for a in range(pnts_order):
knots[a] = a
def makecyclicknots(knots, pnts, order):
order2 = order - 1
if order > 2:
b = pnts + order2
for a in range(1, order2):
if knots[b] != knots[b - a]:
break
if a == order2:
knots[pnts + order - 2] += 1.0
b = order
c = pnts + order + order2
for a in range(pnts + order2, c):
knots[a] = knots[a - 1] + (knots[b] - knots[b - 1])
b -= 1
def basisNurb(t, order, pnts, knots, basis, start, end):
i1 = i2 = 0
orderpluspnts = order + pnts
opp2 = orderpluspnts - 1
# this is for float inaccuracy
if t < knots[0]:
t = knots[0]
elif t > knots[opp2]:
t = knots[opp2]
# this part is order '1'
o2 = order + 1
for i in range(opp2):
if knots[i] != knots[i + 1] and t >= knots[i] and t <= knots[i + 1]:
basis[i] = 1.0
i1 = i - o2
if i1 < 0:
i1 = 0
i2 = i
i += 1
while i < opp2:
basis[i] = 0.0
i += 1
break
else:
basis[i] = 0.0
basis[i] = 0.0
# this is order 2, 3, ...
for j in range(2, order + 1):
if i2 + j >= orderpluspnts:
i2 = opp2 - j
for i in range(i1, i2 + 1):
if basis[i] != 0.0:
d = ((t - knots[i]) * basis[i]) / (knots[i + j - 1] - knots[i])
else:
d = 0.0
if basis[i + 1] != 0.0:
e = ((knots[i + j] - t) * basis[i + 1]) / (knots[i + j] - knots[i + 1])
else:
e = 0.0
basis[i] = d + e
start = 1000
end = 0
for i in range(i1, i2 + 1):
if basis[i] > 0.0:
end = i
if start == 1000:
start = i
return start, end
def nurb_make_curve(nu, resolu, stride=3):
EPS = 1e-6
coord_index = istart = iend = 0
coord_array = [0.0] * (3 * nu.resolution_u * macro_segmentsu(nu))
sum_array = [0] * nu.point_count_u
basisu = [0.0] * macro_knotsu(nu)
knots = makeknots(nu)
resolu = resolu * macro_segmentsu(nu)
ustart = knots[nu.order_u - 1]
uend = knots[nu.point_count_u + nu.order_u - 1] if nu.use_cyclic_u else \
knots[nu.point_count_u]
ustep = (uend - ustart) / (resolu - (0 if nu.use_cyclic_u else 1))
cycl = nu.order_u - 1 if nu.use_cyclic_u else 0
u = ustart
while resolu:
resolu -= 1
istart, iend = basisNurb(u, nu.order_u, nu.point_count_u + cycl, knots, basisu, istart, iend)
#/* calc sum */
sumdiv = 0.0
sum_index = 0
pt_index = istart - 1
for i in range(istart, iend + 1):
pt_index = (i - nu.point_count_u) if i >= nu.point_count_u else (pt_index + 1)
sum_array[sum_index] = basisu[i] * nu.points[pt_index].co[3]
sumdiv += sum_array[sum_index]
sum_index += 1
if (sumdiv != 0.0) and (sumdiv < 1.0 - EPS or sumdiv > 1.0 + EPS):
sum_index = 0
for i in range(istart, iend + 1):
sum_array[sum_index] /= sumdiv
sum_index += 1
coord_array[coord_index: coord_index + 3] = (0.0, 0.0, 0.0)
sum_index = 0
pt_index = istart - 1
for i in range(istart, iend + 1):
if i >= nu.point_count_u:
pt_index = i - nu.point_count_u
else:
pt_index += 1
if sum_array[sum_index] != 0.0:
for j in range(3):
coord_array[coord_index + j] += sum_array[sum_index] * nu.points[pt_index].co[j]
sum_index += 1
coord_index += stride
u += ustep
return coord_array
def get_points_nurbs(spline, resolu, calc_radii=False):
verts, edges, radii = [], [], []
coord_array = nurb_make_curve(spline, resolu, stride=3)
verts = [coord_array[i: i + 3] for i in range(0, len(coord_array), 3)]
edges = generate_edges(n_verts=len(verts), cyclic=spline.use_cyclic_u)
return verts, edges, radii
Functions
def basisNurb(t, order, pnts, knots, basis, start, end)
-
Expand source code
def basisNurb(t, order, pnts, knots, basis, start, end): i1 = i2 = 0 orderpluspnts = order + pnts opp2 = orderpluspnts - 1 # this is for float inaccuracy if t < knots[0]: t = knots[0] elif t > knots[opp2]: t = knots[opp2] # this part is order '1' o2 = order + 1 for i in range(opp2): if knots[i] != knots[i + 1] and t >= knots[i] and t <= knots[i + 1]: basis[i] = 1.0 i1 = i - o2 if i1 < 0: i1 = 0 i2 = i i += 1 while i < opp2: basis[i] = 0.0 i += 1 break else: basis[i] = 0.0 basis[i] = 0.0 # this is order 2, 3, ... for j in range(2, order + 1): if i2 + j >= orderpluspnts: i2 = opp2 - j for i in range(i1, i2 + 1): if basis[i] != 0.0: d = ((t - knots[i]) * basis[i]) / (knots[i + j - 1] - knots[i]) else: d = 0.0 if basis[i + 1] != 0.0: e = ((knots[i + j] - t) * basis[i + 1]) / (knots[i + j] - knots[i + 1]) else: e = 0.0 basis[i] = d + e start = 1000 end = 0 for i in range(i1, i2 + 1): if basis[i] > 0.0: end = i if start == 1000: start = i return start, end
def calcknots(knots, pnts, order, flag)
-
Expand source code
def calcknots(knots, pnts, order, flag): pnts_order = pnts + order if flag == 1: k = 0.0 for a in range(1, pnts_order + 1): knots[a - 1] = k if a >= order and a <= pnts: k += 1.0 elif flag == 2: if order == 4: k = 0.34 for a in range(pnts_order): knots[a] = math.floor(k) k += (1.0 / 3.0) elif order == 3: k = 0.6 for a in range(pnts_order): if a >= order and a <= pnts: k += 0.5 knots[a] = math.floor(k) else: for a in range(pnts_order): knots[a] = a
def generate_edges(n_verts, cyclic)
-
Expand source code
def generate_edges(n_verts, cyclic): edges = [[i, i + 1] for i in range(n_verts - 1)] if cyclic: edges.append([n_verts-1, 0]) return edges
def get_points_bezier(spline, clean=True, calc_radii=False)
-
Expand source code
def get_points_bezier(spline, clean=True, calc_radii=False): knots = spline.bezier_points cyclic = spline.use_cyclic_u if len(knots) < 2: return radii = [] # verts per segment r = spline.resolution_u + 1 # segments in spline segments = len(knots) if not cyclic: segments -= 1 master_point_list = [] for i in range(segments): inext = (i + 1) % len(knots) knot1, knot2 = knots[i].co, knots[inext].co handle1, handle2 = knots[i].handle_right, knots[inext].handle_left bezier = knot1, handle1, handle2, knot2, r points = interpolate_bezier(*bezier) if segments == 1 and not cyclic: pass elif cyclic or (i < segments-1): points.pop() master_point_list.extend([v[:] for v in points]) edges = generate_edges(n_verts=len(master_point_list), cyclic=cyclic) return master_point_list, edges, radii
def get_points_nurbs(spline, resolu, calc_radii=False)
-
Expand source code
def get_points_nurbs(spline, resolu, calc_radii=False): verts, edges, radii = [], [], [] coord_array = nurb_make_curve(spline, resolu, stride=3) verts = [coord_array[i: i + 3] for i in range(0, len(coord_array), 3)] edges = generate_edges(n_verts=len(verts), cyclic=spline.use_cyclic_u) return verts, edges, radii
def macro_knotsu(nu)
-
Expand source code
def macro_knotsu(nu): return nu.order_u + nu.point_count_u + (nu.order_u - 1 if nu.use_cyclic_u else 0)
def macro_segmentsu(nu)
-
Expand source code
def macro_segmentsu(nu): return nu.point_count_u if nu.use_cyclic_u else nu.point_count_u - 1
def makecyclicknots(knots, pnts, order)
-
Expand source code
def makecyclicknots(knots, pnts, order): order2 = order - 1 if order > 2: b = pnts + order2 for a in range(1, order2): if knots[b] != knots[b - a]: break if a == order2: knots[pnts + order - 2] += 1.0 b = order c = pnts + order + order2 for a in range(pnts + order2, c): knots[a] = knots[a - 1] + (knots[b] - knots[b - 1]) b -= 1
def makeknots(nu)
-
Expand source code
def makeknots(nu): knots = [0.0] * (4 + macro_knotsu(nu)) flag = nu.use_endpoint_u + (nu.use_bezier_u << 1) if nu.use_cyclic_u: calcknots(knots, nu.point_count_u, nu.order_u, 0) makecyclicknots(knots, nu.point_count_u, nu.order_u) else: calcknots(knots, nu.point_count_u, nu.order_u, flag) return knots
def nurb_make_curve(nu, resolu, stride=3)
-
Expand source code
def nurb_make_curve(nu, resolu, stride=3): EPS = 1e-6 coord_index = istart = iend = 0 coord_array = [0.0] * (3 * nu.resolution_u * macro_segmentsu(nu)) sum_array = [0] * nu.point_count_u basisu = [0.0] * macro_knotsu(nu) knots = makeknots(nu) resolu = resolu * macro_segmentsu(nu) ustart = knots[nu.order_u - 1] uend = knots[nu.point_count_u + nu.order_u - 1] if nu.use_cyclic_u else \ knots[nu.point_count_u] ustep = (uend - ustart) / (resolu - (0 if nu.use_cyclic_u else 1)) cycl = nu.order_u - 1 if nu.use_cyclic_u else 0 u = ustart while resolu: resolu -= 1 istart, iend = basisNurb(u, nu.order_u, nu.point_count_u + cycl, knots, basisu, istart, iend) #/* calc sum */ sumdiv = 0.0 sum_index = 0 pt_index = istart - 1 for i in range(istart, iend + 1): pt_index = (i - nu.point_count_u) if i >= nu.point_count_u else (pt_index + 1) sum_array[sum_index] = basisu[i] * nu.points[pt_index].co[3] sumdiv += sum_array[sum_index] sum_index += 1 if (sumdiv != 0.0) and (sumdiv < 1.0 - EPS or sumdiv > 1.0 + EPS): sum_index = 0 for i in range(istart, iend + 1): sum_array[sum_index] /= sumdiv sum_index += 1 coord_array[coord_index: coord_index + 3] = (0.0, 0.0, 0.0) sum_index = 0 pt_index = istart - 1 for i in range(istart, iend + 1): if i >= nu.point_count_u: pt_index = i - nu.point_count_u else: pt_index += 1 if sum_array[sum_index] != 0.0: for j in range(3): coord_array[coord_index + j] += sum_array[sum_index] * nu.points[pt_index].co[j] sum_index += 1 coord_index += stride u += ustep return coord_array
def offset(edgekeys, amount)
-
Expand source code
def offset(edgekeys, amount): return [[edge[0] + amount, edge[1] + amount] for edge in edgekeys]