Module sverchok.utils.sv_curve_utils
Expand source code
from math import sqrt, cos, sin, acos, degrees, radians, pi
import bpy
import mathutils
from mathutils import Vector
from mathutils.geometry import interpolate_bezier
def get_points(spline, clean=True):
'''
usage:
spline = bpy.data.curves[0].splines[0]
points = get_points(spline)
'''
knots = spline.bezier_points
if len(knots) < 2:
return
# verts per segment
r = spline.resolution_u + 1
# segments in spline
segments = len(knots)
if not spline.use_cyclic_u:
segments -= 1
master_point_list = []
for i in range(segments):
inext = (i + 1) % len(knots)
knot1 = knots[i].co
handle1 = knots[i].handle_right
handle2 = knots[inext].handle_left
knot2 = knots[inext].co
bezier = knot1, handle1, handle2, knot2, r
points = interpolate_bezier(*bezier)
master_point_list.extend(points)
# some clean up to remove consecutive doubles, this could be smarter...
if clean:
old = master_point_list
good = [v for i, v in enumerate(old[:-1]) if not old[i] == old[i + 1]]
good.append(old[-1])
return good
# makes edge keys, ensure cyclic
Edges = [[i, i + 1] for i in range(n_verts - 1)]
if spline.use_cyclic_u:
Edges.append([i, 0])
return master_point_list, Edges
class Arc(object):
'''
Arc class for SVG reading is taken from:
https://github.com/regebro/svg.path
license: CC0 1.0 Universal
'''
def __init__(self, start, radius, rotation, arc, sweep, end):
"""radius is complex, rotation is in degrees,
large and sweep are 1 or 0 (True/False also work)"""
self.start = start
self.radius = radius
self.rotation = rotation
self.arc = bool(arc)
self.sweep = bool(sweep)
self.end = end
self._parameterize()
def _parameterize(self):
# Conversion from endpoint to center parameterization
# http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
cosr = cos(radians(self.rotation))
sinr = sin(radians(self.rotation))
dx = (self.start.real - self.end.real) / 2
dy = (self.start.imag - self.end.imag) / 2
x1prim = cosr * dx + sinr * dy
x1prim_sq = x1prim * x1prim
y1prim = -sinr * dx + cosr * dy
y1prim_sq = y1prim * y1prim
rx = self.radius.real
rx_sq = rx * rx
ry = self.radius.imag
ry_sq = ry * ry
# Correct out of range radii
radius_check = (x1prim_sq / rx_sq) + (y1prim_sq / ry_sq)
if radius_check > 1:
rx *= sqrt(radius_check)
ry *= sqrt(radius_check)
rx_sq = rx * rx
ry_sq = ry * ry
t1 = rx_sq * y1prim_sq
t2 = ry_sq * x1prim_sq
c = sqrt(abs((rx_sq * ry_sq - t1 - t2) / (t1 + t2)))
if self.arc == self.sweep:
c = -c
cxprim = c * rx * y1prim / ry
cyprim = -c * ry * x1prim / rx
self.center = complex((cosr * cxprim - sinr * cyprim) +
((self.start.real + self.end.real) / 2),
(sinr * cxprim + cosr * cyprim) +
((self.start.imag + self.end.imag) / 2))
ux = (x1prim - cxprim) / rx
uy = (y1prim - cyprim) / ry
vx = (-x1prim - cxprim) / rx
vy = (-y1prim - cyprim) / ry
n = sqrt(ux * ux + uy * uy)
p = ux
theta = degrees(acos(p / n))
if uy < 0:
theta = -theta
self.theta = theta % 360
n = sqrt((ux * ux + uy * uy) * (vx * vx + vy * vy))
p = ux * vx + uy * vy
if p == 0:
delta = degrees(acos(0))
else:
delta = degrees(acos(p / n))
if (ux * vy - uy * vx) < 0:
delta = -delta
self.delta = delta % 360
if not self.sweep:
self.delta -= 360
def point(self, pos):
angle = radians(self.theta + (self.delta * pos))
cosr = cos(radians(self.rotation))
sinr = sin(radians(self.rotation))
x = cosr * cos(angle) * self.radius.real - sinr * \
sin(angle) * self.radius.imag + self.center.real
y = sinr * cos(angle) * self.radius.real + cosr * \
sin(angle) * self.radius.imag + self.center.imag
return [x, y]
Functions
def get_points(spline, clean=True)
-
usage: spline = bpy.data.curves[0].splines[0] points = get_points(spline)
Expand source code
def get_points(spline, clean=True): ''' usage: spline = bpy.data.curves[0].splines[0] points = get_points(spline) ''' knots = spline.bezier_points if len(knots) < 2: return # verts per segment r = spline.resolution_u + 1 # segments in spline segments = len(knots) if not spline.use_cyclic_u: segments -= 1 master_point_list = [] for i in range(segments): inext = (i + 1) % len(knots) knot1 = knots[i].co handle1 = knots[i].handle_right handle2 = knots[inext].handle_left knot2 = knots[inext].co bezier = knot1, handle1, handle2, knot2, r points = interpolate_bezier(*bezier) master_point_list.extend(points) # some clean up to remove consecutive doubles, this could be smarter... if clean: old = master_point_list good = [v for i, v in enumerate(old[:-1]) if not old[i] == old[i + 1]] good.append(old[-1]) return good # makes edge keys, ensure cyclic Edges = [[i, i + 1] for i in range(n_verts - 1)] if spline.use_cyclic_u: Edges.append([i, 0]) return master_point_list, Edges
Classes
class Arc (start, radius, rotation, arc, sweep, end)
-
Arc class for SVG reading is taken from: https://github.com/regebro/svg.path license: CC0 1.0 Universal
radius is complex, rotation is in degrees, large and sweep are 1 or 0 (True/False also work)
Expand source code
class Arc(object): ''' Arc class for SVG reading is taken from: https://github.com/regebro/svg.path license: CC0 1.0 Universal ''' def __init__(self, start, radius, rotation, arc, sweep, end): """radius is complex, rotation is in degrees, large and sweep are 1 or 0 (True/False also work)""" self.start = start self.radius = radius self.rotation = rotation self.arc = bool(arc) self.sweep = bool(sweep) self.end = end self._parameterize() def _parameterize(self): # Conversion from endpoint to center parameterization # http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes cosr = cos(radians(self.rotation)) sinr = sin(radians(self.rotation)) dx = (self.start.real - self.end.real) / 2 dy = (self.start.imag - self.end.imag) / 2 x1prim = cosr * dx + sinr * dy x1prim_sq = x1prim * x1prim y1prim = -sinr * dx + cosr * dy y1prim_sq = y1prim * y1prim rx = self.radius.real rx_sq = rx * rx ry = self.radius.imag ry_sq = ry * ry # Correct out of range radii radius_check = (x1prim_sq / rx_sq) + (y1prim_sq / ry_sq) if radius_check > 1: rx *= sqrt(radius_check) ry *= sqrt(radius_check) rx_sq = rx * rx ry_sq = ry * ry t1 = rx_sq * y1prim_sq t2 = ry_sq * x1prim_sq c = sqrt(abs((rx_sq * ry_sq - t1 - t2) / (t1 + t2))) if self.arc == self.sweep: c = -c cxprim = c * rx * y1prim / ry cyprim = -c * ry * x1prim / rx self.center = complex((cosr * cxprim - sinr * cyprim) + ((self.start.real + self.end.real) / 2), (sinr * cxprim + cosr * cyprim) + ((self.start.imag + self.end.imag) / 2)) ux = (x1prim - cxprim) / rx uy = (y1prim - cyprim) / ry vx = (-x1prim - cxprim) / rx vy = (-y1prim - cyprim) / ry n = sqrt(ux * ux + uy * uy) p = ux theta = degrees(acos(p / n)) if uy < 0: theta = -theta self.theta = theta % 360 n = sqrt((ux * ux + uy * uy) * (vx * vx + vy * vy)) p = ux * vx + uy * vy if p == 0: delta = degrees(acos(0)) else: delta = degrees(acos(p / n)) if (ux * vy - uy * vx) < 0: delta = -delta self.delta = delta % 360 if not self.sweep: self.delta -= 360 def point(self, pos): angle = radians(self.theta + (self.delta * pos)) cosr = cos(radians(self.rotation)) sinr = sin(radians(self.rotation)) x = cosr * cos(angle) * self.radius.real - sinr * \ sin(angle) * self.radius.imag + self.center.real y = sinr * cos(angle) * self.radius.real + cosr * \ sin(angle) * self.radius.imag + self.center.imag return [x, y]
Methods
def point(self, pos)
-
Expand source code
def point(self, pos): angle = radians(self.theta + (self.delta * pos)) cosr = cos(radians(self.rotation)) sinr = sin(radians(self.rotation)) x = cosr * cos(angle) * self.radius.real - sinr * \ sin(angle) * self.radius.imag + self.center.real y = sinr * cos(angle) * self.radius.real + cosr * \ sin(angle) * self.radius.imag + self.center.imag return [x, y]