Module sverchok.utils.pulga_physics_modular_core

Expand source code
# This file is part of project Sverchok. It's copyrighted by the contributors
# recorded in the version control history of the file, available from
# its original location https://github.com/nortikin/sverchok/commit/master
#
# SPDX-License-Identifier: GPL3
# License-Filename: LICENSE

import numpy as np
from mathutils.bvhtree import BVHTree
from sverchok.utils.modules.vector_math_utils import angle_between, unit_vector
from sverchok.dependencies import FreeCAD
if FreeCAD is not None:
    import Part
    from  FreeCAD import Base
from sverchok.utils.surface.freecad import is_solid_face_surface
from sverchok.dependencies import scipy
from sverchok.utils.sv_mesh_utils import polygons_to_edges_np
from sverchok.utils.modules.edge_utils import adjacent_faces_number

def np_dot(u, v, axis=1):
    return np.sum(u * v, axis=axis)

def reflect(v1, mirror):

    dot2 = 2 * np.sum(mirror * v1, axis=1)
    return v1 - (dot2[:, np.newaxis] * mirror)

def cross_indices3(n):
    '''create crossed indices'''

    nu = np.sum(np.arange(n, dtype=np.int64))
    ind = np.zeros((nu, 2), dtype=np.int16)
    c = 0
    for i in range(n-1):
        l = n-i-1
        np_i = np.full(n-i-1, i, dtype=np.int32)
        np_j = np.arange(i+1, n, dtype=np.int32)
        np_a = np.stack((np_i, np_j), axis=-1)
        ind[c:c+l, :] = np_a
        c += l

    return ind


def numpy_match_long_repeat(p):
    '''match list length by repeating last one'''
    q = []
    maxl = 0
    for g in p:
        maxl = max(maxl, g.shape[0])
    for g in p:
        difl = maxl - g.shape[0]
        if difl > 0:
            rr = np.repeat(g[np.newaxis, -1], difl, axis=0)
            g = np.concatenate((g, rr))
        q.append(g)
    return q


def numpy_fit_long_repeat(p, maxl):
    '''match list length by repeating last one or removing end'''
    q = []
    for g in p:
        difl = maxl - g.shape[0]
        if difl > 0:
            rr = np.repeat(g[np.newaxis, -1], difl, axis=0)
            g = np.concatenate((g, rr))
        if difl < 0:
            g = g[:maxl]
        q.append(g)
    return q


def match_cylce(p, n):
    '''append cylcing till have n items'''
    difference = n - len(p)
    for i in range(difference):
        p.append(p[i % len(p)])


def expand_pols_numpy(p, len_max):
    '''to fit variable sided polygons in one array (cycling)'''
    np_match_cycle = np.vectorize(match_cylce)
    np_match_cycle(p, len_max)
    new_pols = np.zeros((len(p), len_max), dtype=np.int32)
    for i in range(len(p)):
        new_pols[i, :] = p[i]
    return new_pols


def calc_rest_length(np_verts, np_springs):
    '''calculate edges length'''
    pairs_springs = np_verts[np_springs, :]
    vect_rest = (pairs_springs[:, 0, :] - pairs_springs[:, 1, :])
    dist_rest = np.linalg.norm(vect_rest, axis=1)
    return dist_rest


def pols_normals(pol_v, mag):
    '''get actual polygons normal with controlled magnitude'''
    v1 = pol_v[:, 1, :] - pol_v[:, 0, :]
    v2 = pol_v[:, 2, :] - pol_v[:, 0, :]
    pols_normal = np.cross(v1, v2)
    pols_normal_d = np.linalg.norm(pols_normal, axis=1)
    return pols_normal / pols_normal_d[:, np.newaxis] * mag


def calc_area(pol_side_max, pol_v, pols_normal):
    '''calculate polygons area (equal sided polygons)'''
    prod = np.zeros((pol_side_max, len(pols_normal), 3), dtype=np.float32)
    for i in range(pol_side_max):
        prod[i, :, :] = np.cross(pol_v[:, i, :], pol_v[:, (i + 1) % pol_side_max, :])
    tot = np.sum(prod, axis=0)
    return abs(np.sum(tot * pols_normal, axis=1) / 2)


def calc_area_var_sides(pol_side_max, pols_sides, pol_v, pols_normal):
    '''calculate polygons area (variable sided polygons)'''
    prod = np.zeros((pol_side_max, len(pols_sides), 3), dtype=np.float32)
    for i in range(pol_side_max):
        mask = pols_sides > i
        prod[i, mask, :] = np.cross(pol_v[mask, i, :], pol_v[mask, (i + 1) % pol_side_max, :])

    tot = np.sum(prod, axis=0)
    return abs(np.sum(tot * pols_normal, axis=1) / 2)


def bvh_safe_check(verts, pols):
    len_v = len(verts)
    for p in pols:
        for c in p:
            if c > len_v:
                raise Exception(f"Index {c} should be less than vertices length ({len_v})")


class SvAttractorsForce():
    def __init__(self, location, strength, clamp, decay_power):

        np_location = np.array(location)
        np_strength = np.array(strength)
        np_clamp = np.array(clamp)
        np_decay_pow = np.array(decay_power)
        params = numpy_match_long_repeat([np_location, np_strength, np_clamp, np_decay_pow])
        self.points = params[0]
        self.strength = params[1]
        self.use_attractors = np.any(params[1] != 0)
        self.clamp = params[2]
        self.decay = params[3]



    def setup(self, ps):
        pass


    def add(self, ps):
        if not self.use_attractors:
            return
        v_attract = ps.verts[np.newaxis, :, :] - self.points[:, np.newaxis, :]
        dist_attract = np.linalg.norm(v_attract, axis=2)
        mask = dist_attract > self.clamp[:, np.newaxis]
        mask_true = np.invert(mask)
        dist_attract2 = np.power(dist_attract, self.decay[:, np.newaxis])
        dist_attract_cor = np.clip(dist_attract2[mask_true], 1e-2, 1e4)

        v_attract *= self.strength[:, np.newaxis, np.newaxis]
        v_attract_normal = v_attract[mask_true] / dist_attract_cor[:, np.newaxis]

        v_attract[mask_true] = -v_attract_normal
        v_attract[mask, :] = 0

        r_attract = np.sum(v_attract, axis=0)
        ps.force_resultant += r_attract



class SvAttractorsLineForce():
    def __init__(self, location, direction, strength, clamp, decay_power):

        np_location = np.array(location)
        np_direction = np.array(direction)
        np_strength = np.array(strength)
        np_clamp = np.array(clamp)
        np_decay_pow = np.array(decay_power)
        params = numpy_match_long_repeat([np_location, np_direction, np_strength, np_clamp, np_decay_pow])
        self.points = params[0]
        self.direction = params[1]/np.linalg.norm(params[1], axis=1)[:, np.newaxis]
        self.strength = params[2]
        self.use_attractors = np.any(params[2] != 0)
        self.clamp = params[3]
        self.decay = params[4]



    def setup(self, ps):
        pass


    def add(self, ps):
        if not self.use_attractors:
            return
        v_attract = ps.verts[np.newaxis, :, :] - self.points[:, np.newaxis, :]
        vect_proy = np_dot(v_attract, self.direction[:, np.newaxis, :], axis=2)

        closest_point = self.points[:, np.newaxis, :] + vect_proy[:, :, np.newaxis] * self.direction[:, np.newaxis, :]

        dif_v = closest_point -  ps.verts[np.newaxis, :, :]
        dist_attract = np.linalg.norm(dif_v, axis=2)
        mask = dist_attract > self.clamp[:, np.newaxis]

        mask_true = np.invert(mask)
        dist_attract2 = np.power(dist_attract, self.decay[:, np.newaxis])
        dist_attract_cor = np.clip(dist_attract2[mask_true], 1e-2, 1e4)

        dif_v *= self.strength[:, np.newaxis, np.newaxis]
        v_attract_normal = dif_v[mask_true] / dist_attract_cor[:, np.newaxis]

        v_attract[mask_true] = v_attract_normal
        v_attract[mask, :] = 0

        r_attract = np.sum(v_attract, axis=0)
        ps.force_resultant += r_attract


class SvAttractorsPlaneForce():
    def __init__(self, location, normal, strength, clamp, decay_power):

        np_location = np.array(location)
        np_normal = np.array(normal)
        np_strength = np.array(strength)
        np_clamp = np.array(clamp)
        np_decay_pow = np.array(decay_power)
        params = numpy_match_long_repeat([np_location, np_normal, np_strength, np_clamp, np_decay_pow])

        self.points = params[0]
        self.normal = params[1]/np.linalg.norm(params[1], axis=1)[:, np.newaxis]
        self.strength = params[2]
        self.use_attractors = np.any(params[2] != 0)
        self.clamp = params[3]
        self.decay = params[4]



    def setup(self, ps):
        pass


    def add(self, ps):
        if not self.use_attractors:
            return

        v_attract = ps.verts[np.newaxis, :, :] - self.points[:, np.newaxis, :]
        dist_attract = np_dot(v_attract, self.normal[:, np.newaxis, :], axis=2)

        mask = dist_attract > self.clamp[:, np.newaxis]
        mask_true = np.invert(mask)
        plane_side = dist_attract < 0
        dist_attract2 = np.power(dist_attract, self.decay[:, np.newaxis])
        dist_attract_cor = np.clip(dist_attract2, 1e-2, 1e4)
        dist_attract_cor[plane_side] *= -1

        v_attract_normal = self.normal[:, np.newaxis, :] / dist_attract_cor[:, :, np.newaxis] * self.strength[:, np.newaxis, np.newaxis]
        v_attract[mask_true] = -v_attract_normal[mask_true]
        v_attract[mask, :] = 0

        r_attract = np.sum(v_attract, axis=0)
        ps.force_resultant += r_attract


class SvVortexForce():

    def __init__(self, location, direction, rot_strength, inflow_strength, forward_strength, clamp, decay_power):


        np_location = np.array(location)
        np_direction = np.array(direction)
        np_rot_strength = np.array(rot_strength)
        np_inflow_strength = np.array(inflow_strength)
        np_forward_strength = np.array(forward_strength)
        np_clamp = np.array(clamp)
        np_decay_pow = np.array(decay_power)
        params = numpy_match_long_repeat([np_location, np_direction, np_rot_strength, np_inflow_strength, np_forward_strength, np_clamp, np_decay_pow])
        self.points = params[0]
        self.direction = params[1]/np.linalg.norm(params[1], axis=1)[:, np.newaxis]
        self.rot_strength = params[2]
        self.use_rotation = np.any(params[2] != 0)
        self.inflow_strength = params[3]
        self.use_inflow = np.any(params[3] != 0)
        self.forward_strength = params[4]
        self.use_forward = np.any(params[4] != 0)
        self.use_vortex = np.any([self.use_rotation, self.use_inflow, self.use_forward])
        self.clamp = params[5]
        self.decay = params[6]



    def setup(self, ps):
        pass


    def add(self, ps):

        if not self.use_vortex:
            return

        v_attract = ps.verts[np.newaxis, :, :] - self.points[:, np.newaxis, :]
        vect_proy = np_dot(v_attract, self.direction[:, np.newaxis, :],axis=2)

        closest_point = self.points[:, np.newaxis, :] +vect_proy[:, :, np.newaxis] * self.direction[:, np.newaxis, :]

        dif_v = closest_point -  ps.verts[np.newaxis, :, :]
        dist_attract = np.linalg.norm(dif_v, axis=2)
        mask_true = dist_attract < self.clamp[:, np.newaxis]

        dist_attract2 = np.power(dist_attract, self.decay[:, np.newaxis])
        dist_attract_cor = np.clip(dist_attract2, 1e-2, 1e4)


        v_attract_normal = dif_v/ dist_attract_cor[:, :,np.newaxis]
        v_attract[:] = 0

        if self.use_rotation:
            v_rotation = np.cross(v_attract_normal, self.direction[:, np.newaxis, :]) * self.rot_strength[:, np.newaxis, np.newaxis]
            v_attract[mask_true] += v_rotation[mask_true]

        if self.use_forward:
            v_forward = self.direction[:, np.newaxis, :] *  self.forward_strength[:, np.newaxis, np.newaxis] / dist_attract_cor[:, :,np.newaxis]
            v_attract[mask_true] += v_forward[mask_true]

        if self.use_inflow:
            v_attract_normal *= self.inflow_strength[:, np.newaxis, np.newaxis]
            v_attract[mask_true] += v_attract_normal[mask_true]


        r_attract = np.sum(v_attract, axis=0)
        ps.force_resultant += r_attract


class SvBoundingBoxForce():
    def __init__(self, b_box):

        np_bbox = np.array(b_box)
        bbox_max = np.amax(np_bbox, axis=0)
        bbox_min = np.amin(np_bbox, axis=0)
        self.bbox_min = bbox_min
        self.bbox_max = bbox_max

    def setup(self, ps):
        pass

    def add(self, ps):
        min_mask = ps.verts <= self.bbox_min + ps.rads[:, np.newaxis]
        max_mask = ps.verts >= self.bbox_max - ps.rads[:, np.newaxis]
        out_vals = np.any([min_mask, max_mask], axis=0)

        ps.vel[out_vals] = 0
        ps.force_resultant[out_vals] = 0

        ps.verts = np.clip(ps.verts, self.bbox_min + ps.rads[:, np.newaxis], self.bbox_max - ps.rads[:, np.newaxis])


def project_on_plane(vects, normal):
    distance = np.sum(vects * normal, axis=1)
    return vects - normal * distance[:,np.newaxis]


class SvBoundingSphereForce():
    def __init__(self, center, radius):


        self.center = center[0]
        self.radius = radius[0]



    def setup(self, ps):
        pass


    def add(self, ps):
        vs = ps.verts - self.center
        dist = np.linalg.norm(vs, axis=1)
        mask = dist + ps.rads > self.radius
        vs_normal = vs[mask]/dist[mask, np.newaxis]
        ps.verts[mask] = vs_normal*(self.radius - ps.rads[mask])[:,np.newaxis]

        ps.vel[mask] = project_on_plane(ps.vel[mask], vs_normal)
        ps.force_resultant[mask] = project_on_plane(ps.force_resultant[mask], vs_normal)


class SvBoundingSphereSurfaceForce():
    def __init__(self, center, radius):


        self.center = center[0]
        self.radius = radius[0]



    def setup(self, ps):
        pass


    def add(self, ps):
        vs = ps.verts - self.center
        dist = np.linalg.norm(vs, axis=1)
        mask = dist == 0
        vs[mask]=ps.verts[mask]+[[1,0,0]]
        dist[mask] = 1
        vs_normal = vs/dist[:, np.newaxis]
        ps.verts = vs_normal * self.radius

        ps.vel = project_on_plane(ps.vel, vs_normal)
        ps.force_resultant = project_on_plane(ps.force_resultant, vs_normal)


class SvBoundingPlaneSurfaceForce():
    def __init__(self, center, normal):


        self.center = np.array(center[0])
        self.normal = np.array(normal[0])
        self.normal = self.normal/np.linalg.norm(self.normal)


    def setup(self, ps):
        pass


    def add(self, ps):

        vs = ps.verts - self.center
        distance = np.sum(vs * self.normal, axis=1)
        ps.verts = ps.verts - self.normal[np.newaxis, :] * distance[:, np.newaxis]

        ps.vel = project_on_plane(ps.vel, self.normal)
        ps.force_resultant = project_on_plane(ps.force_resultant, self.normal)


class SvBoundingMeshForce():
    def __init__(self, vertices, polygons, volume=False):

        bvh_safe_check(vertices, polygons)
        self.bvh = BVHTree.FromPolygons(vertices, polygons, all_triangles=False, epsilon=0.0)

        if volume:
            self.add = self.add_volume
        else:
            self.add = self.add_surface

    def setup(self, ps):
        self.nearest = np.zeros(ps.verts.shape, dtype=np.float64)
        self.normals = np.zeros(ps.verts.shape, dtype=np.float64)

    def find_nearest(self, verts):
        v_nearest = self.nearest
        v_normals = self.normals
        for v, near, norm in zip(verts, v_nearest, v_normals):
            nearest, normal, _, _ = self.bvh.find_nearest(v)

            near[0] = nearest[0]
            near[1] = nearest[1]
            near[2] = nearest[2]
            norm[0] = normal[0]
            norm[1] = normal[1]
            norm[2] = normal[2]

    def add_surface(self, ps):

        self.find_nearest(ps.verts)
        ps.verts = self.nearest
        ps.vel = project_on_plane(ps.vel, self.normals)
        ps.force_resultant = project_on_plane(ps.force_resultant, self.normals)

    def add_volume(self, ps):
        self.find_nearest(ps.verts)
        outer_mask = np_dot(self.nearest - ps.verts, self.normals) <= 0
        ps.verts[outer_mask] = self.nearest[outer_mask]

        ps.vel[outer_mask] = project_on_plane(ps.vel[outer_mask], self.normals[outer_mask])
        ps.force_resultant[outer_mask] = project_on_plane(ps.force_resultant[outer_mask], self.normals[outer_mask])


class SvBoundingSolidForce():
    def __init__(self, solid, volume=False):

        if isinstance(solid, Part.Solid):
            self.shape = solid.OuterShell
        elif is_solid_face_surface(solid):
            self.shape = solid.face
        else:
            self.shape = solid

        if volume:
            self.add = self.add_volume
        else:
            self.add = self.add_surface

    def find_closest(self,v):
        vertex = Part.Vertex(Base.Vector(v))

        dist = self.shape.distToShape(vertex)
        if str(dist[2][0][0]) == "b'Face'":
            normal = self.shape.Faces[dist[2][0][1]].normalAt(*dist[2][0][2])
        elif str(dist[2][0][0]) == "b'Edge'":
            edge = self.shape.Edges[dist[2][0][1]]
            vector = self.shape.Edges[dist[2][0][1]].valueAt(dist[2][0][2])
            face_list = self.shape.ancestorsOfType(edge, Part.Face)
            normal = [0,0,0]
            count = 0
            for face in face_list:
                for edge1 in face.Edges:

                    if edge1.isSame(edge):
                        param = face.Surface.parameter(vector)
                        normal_ed = face.normalAt(*param)
                        normal[0] += normal_ed[0]
                        normal[1] += normal_ed[1]
                        normal[2] += normal_ed[2]
                        count+=1
                        break
            if count > 0:
                normal[0] /= count
                normal[1] /= count
                normal[2] /= count
            else:
                normal = [0, 0, 1]
        else:
            vertex = self.shape.Vertexes[dist[2][0][1]]
            face_list = self.shape.ancestorsOfType(vertex, Part.Face)
            normal = [0, 0, 0]
            count = 0
            for face in face_list:
                for vertex1 in face.Vertexes:

                    if vertex1.isSame(vertex):
                        param = face.Surface.parameter(vertex.Point)
                        normal_ed = face.normalAt(*param)
                        normal[0] += normal_ed[0]
                        normal[1] += normal_ed[1]
                        normal[2] += normal_ed[2]
                        count+=1
                        break
            if count > 0:
                normal[0] /= count
                normal[1] /= count
                normal[2] /= count
            else:
                normal = [0, 0, 1]
        return dist[1][0][0], normal

    def find(self, verts):
        v_nearest = self.nearest
        v_normals = self.normals
        for v, near, norm in zip(verts, v_nearest, v_normals):
            nearest, normal = self.find_closest(v)
            near[0] = nearest[0]
            near[1] = nearest[1]
            near[2] = nearest[2]
            norm[0] = normal[0]
            norm[1] = normal[1]
            norm[2] = normal[2]

    def find_masked(self, verts, mask):
        v_nearest = self.nearest
        v_normals = self.normals
        for v, near, norm in zip(verts[mask], v_nearest[mask], v_normals[mask]):
            nearest, normal = self.find_closest(v)
            near[0] = nearest[0]
            near[1] = nearest[1]
            near[2] = nearest[2]
            norm[0] = normal[0]
            norm[1] = normal[1]
            norm[2] = normal[2]

    def is_outside(self, verts):

        return np.array([not self.shape.isInside(Base.Vector(v), 1e-6, False) for v in verts], dtype=np.bool_)
    def setup(self, ps):
        self.nearest = np.zeros(ps.verts.shape, dtype=np.float64)
        self.normals = np.zeros(ps.verts.shape, dtype=np.float64)


    def add_surface(self, ps):
        self.find(ps.verts)
        ps.verts = self.nearest
        ps.vel = project_on_plane(ps.vel, self.normals)
        ps.force_resultant = project_on_plane(ps.force_resultant, self.normals)

    def add_volume(self, ps):
        outside = self.is_outside(ps.verts)
        self.find_masked(ps.verts, outside)
        ps.verts[outside] =  self.nearest[outside]
        ps.vel[outside] = project_on_plane(ps.vel[outside], self.normals[outside])
        ps.force_resultant[outside] = project_on_plane(ps.force_resultant[outside], self.normals[outside])


class SvRandomForce():
    def __init__(self, random_force, random_variation, random_seed):

        # random_seed, random_force, random_variation = local_params
        np_random_force = np.array(random_force)

        np_random_variation = np.array(random_variation)
        random_force = np_random_force[:, np.newaxis]
        random_variation = np_random_variation[:, np.newaxis]
        random_variate = any(random_variation > 1e-6)
        self.seed = random_seed[0]
        self.random_force = random_force
        self.random_variate = random_variate
        self.random_variation = random_variation

    def setup(self, ps):
        np.random.seed(int(self.seed))
        self.random_v = self.random_force * np.random.random((ps.v_len, 3)) - self.random_force / 2


    def add(self, ps):

        if self.random_variate:
            random_var = 2 * self.random_force * np.random.random((ps.v_len, 3)) - self.random_force
            self.random_v = self.random_v * (1 - self.random_variation) + random_var * self.random_variation
        ps.force_resultant += self.random_v


class SvCollisionForce():
    def __init__(self, magnitude, use_kdtree=False):

        self.magnitude = np.array(magnitude)
        self.uniform_magnitude = len(magnitude) < 2
        self.needs = ['dif_v', 'dist', 'dist_cor', 'collide', 'normal_v']
        self.use_kdtree = use_kdtree
        if self.use_kdtree:
            self.needs = ['kd_tree', 'max_radius', 'kd_collisions']
            self.add = self.add_kdt
        else:
            self.needs = ['indexes', 'sum_rad', 'dif_v', 'dist', 'dist_cor', 'collide', 'normal_v']
            self.add = self.add_brute_force


    def setup(self, ps):
        ps.aware = True
        for need in self.needs:
            ps.relations.needed[need] = True
        if self.uniform_magnitude:
            self.f_magnitude = self.magnitude
        else:
            self.f_magnitude = numpy_fit_long_repeat([self.magnitude], ps.v_len)[0]

    def add_brute_force(self, ps):

        id0 = ps.relations.index_inter[:, 0]
        id1 = ps.relations.index_inter[:, 1]

        le = ps.relations.dist[ps.relations.mask, np.newaxis] - ps.relations.sum_rad[ps.relations.mask, np.newaxis]
        no = ps.relations.normal_v[ps.relations.mask]
        sf = self.f_magnitude[:, np.newaxis]
        len0, len1 = [sf, sf] if self.uniform_magnitude else [sf[id1], sf[id0]]

        np.add.at(ps.force_resultant, id0, -no * le * len0)
        np.add.at(ps.force_resultant, id1, no * le * len1)

    def add_kdt(self, ps):
        relations = ps.relations
        if len(relations.kd_indexes) > 0:

            id0 = relations.kd_indexes[:, 0]
            id1 = relations.kd_indexes[:, 1]
            sum_rad = relations.kd_sum_rad
            dif_v = relations.kd_dif_v
            dist = relations.kd_dist
            mask = relations.kd_mask
            dist_cor = np.clip(dist[mask], 1e-6, 1e4)

            normal_v = dif_v[mask] / dist_cor[:, np.newaxis]



            le = (dist[mask] - sum_rad[mask])[:, np.newaxis]

            variable_coll = len(self.f_magnitude) > 1
            sf = self.f_magnitude[:, np.newaxis]
            len0, len1 = [sf[id1[mask]], sf[id0[mask]]] if variable_coll else [sf, sf]


            np.add.at(ps.force_resultant, id0[mask], -normal_v * le * len0)
            np.add.at(ps.force_resultant, id1[mask], normal_v * le * len1)


class SvAttractionForce():
    def __init__(self, magnitude, decay, max_distance, stop_on_collide=False, use_kdtree=False):

        self.magnitude = np.array(magnitude)
        self.uniform_magnitude = len(magnitude) < 2

        self.decay = np.array(decay[0])
        self.use_kdtree = use_kdtree
        self.max_distance = max_distance[0]
        self.stop_on_collide = stop_on_collide
        if self.use_kdtree:
            self.needs = ['kd_tree']
            self.add = self.add_kdt
        else:
            self.needs = ['indexes', 'sum_rad', 'mass_product', 'dif_v', 'dist', 'dist_cor', 'normal_v']
            if self.stop_on_collide:
                self.needs.append('attract_mask')
            self.add = self.add_brute_force

    def setup(self, ps):
        ps.aware = True
        for need in self.needs:
            ps.relations.needed[need] = True
        if self.uniform_magnitude:
            self.f_magnitude = self.magnitude
        else:
            self.f_magnitude = numpy_fit_long_repeat([self.magnitude], ps.v_len)[0]

    def add_brute_force(self, ps):
        relations = ps.relations
        if self.stop_on_collide:
            mask = np.all((relations.dist < self.max_distance, relations.attract_mask), axis=0)
        else:
            mask = relations.dist < self.max_distance
        index_non_inter = ps.relations.indexes[mask]
        id0 = index_non_inter[:, 0]
        id1 = index_non_inter[:, 1]
        dist2 = np.power(relations.dist[mask], self.decay)[:, np.newaxis]
        normal = relations.normal_v[mask]
        direction = normal / dist2 * relations.mass_product[mask, np.newaxis]


        att = self.f_magnitude
        len0, len1 = [att, att] if self.uniform_magnitude else [att[id1], att[id0]]

        np.add.at(ps.force_resultant, id0, -direction * len0)
        np.add.at(ps.force_resultant, id1, direction * len1)

    def add_kdt(self, ps):
        relations = ps.relations
        indexes = relations.kd_tree.query_pairs(r=self.max_distance, output_type='ndarray')
        if len(indexes) > 0:

            id0 = indexes[:, 0]
            id1 = indexes[:, 1]
            dif_v = ps.verts[id0, :] - ps.verts[id1, :]

            dist = np.linalg.norm(dif_v, axis=1)
            if self.stop_on_collide:
                collide_mask = dist > ps.mass[id0] * ps.mass[id1]
                dist_cor = np.clip(dist[collide_mask], 1e-6, 1e4)
                dist2 = np.power(dist[collide_mask], self.decay)[:, np.newaxis]
                normal_v = dif_v[collide_mask] / dist_cor[:, np.newaxis]
                id0 = indexes[collide_mask, 0]
                id1 = indexes[collide_mask, 1]
                mass_product = (ps.mass[id0] * ps.mass[id1])
            else:

                mass_product = ps.mass[id0] * ps.mass[id1]
                dist_cor = np.clip(dist, 1e-6, 1e4)
                dist2 = np.power(dist, self.decay)[:, np.newaxis]
                normal_v = dif_v / dist_cor[:, np.newaxis]

            direction = normal_v / dist2 * mass_product[:, np.newaxis]

            att = self.f_magnitude
            len0, len1 = [att, att] if self.uniform_magnitude else [att[id1], att[id0]]
            np.add.at(ps.force_resultant, id0, -direction * len0)
            np.add.at(ps.force_resultant, id1, direction * len1)


class SvAlignForce():
    def __init__(self, strength, decay, max_distance, use_kdtree=False):

        self.strength = np.array(strength)
        self.uniform_strength = len(strength) < 2
        self.decay = decay[0]


        self.f_strength = self.strength
        self.max_distance = np.array(max_distance[0])
        self.use_kdtree = use_kdtree
        if self.use_kdtree:
            self.needs = ['kd_tree']
            self.add = self.add_kdt
        else:
            self.needs = ['indexes', 'dif_v', 'dist', 'dist_cor']
            self.add = self.add_brute_force


    def setup(self, ps):

        ps.aware = True
        for need in self.needs:
            ps.relations.needed[need] = True
        if self.uniform_strength:
            self.f_strength = self.strength
        else:
            self.f_strength = numpy_fit_long_repeat([self.strength], ps.v_len)[0]



    def add_brute_force(self, ps):
        relations = ps.relations
        mask = relations.dist_cor < self.max_distance
        id0 = relations.indexes[mask, 0]
        id1 = relations.indexes[mask, 1]
        dist2 = np.power(relations.dist_cor[mask], self.decay)


        if self.uniform_strength:
            constant = (self.f_strength / (dist2 * ps.v_len))[:, np.newaxis]
            np.add.at(ps.force_resultant, id0, ps.vel[id1, :] * constant)
            np.add.at(ps.force_resultant, id1, ps.vel[id0, :] * constant)

        else:
            constant0 = (self.f_strength[id0] / (dist2 * ps.v_len))[:, np.newaxis]
            constant1 = (self.f_strength[id1] / (dist2 * ps.v_len))[:, np.newaxis]
            np.add.at(ps.force_resultant, id0, ps.vel[id1, :] * constant0)
            np.add.at(ps.force_resultant, id1, ps.vel[id0, :] * constant1)

    def add_kdt(self, ps):

        relations = ps.relations
        indexes = relations.kd_tree.query_pairs(r=self.max_distance, output_type='ndarray')
        if len(indexes) > 0:
            dif_v = ps.verts[indexes[:, 0], :] - ps.verts[indexes[:, 1], :]
            dist = np.linalg.norm(dif_v, axis=1)
            dist_cor = np.clip(dist, 1e-6, 1e4)
            id0 = indexes[:, 0]
            id1 = indexes[:, 1]
            dist2 = np.power(dist_cor, self.decay)


            if self.uniform_strength:
                constant = (self.f_strength / (dist2 * ps.v_len))[:, np.newaxis]
                np.add.at(ps.force_resultant, id0, ps.vel[id1, :] * constant)
                np.add.at(ps.force_resultant, id1, ps.vel[id0, :] * constant)

            else:
                constant0 = (self.f_strength[id0] / (dist2 * ps.v_len))[:, np.newaxis]
                constant1 = (self.f_strength[id1] / (dist2 * ps.v_len))[:, np.newaxis]
                np.add.at(ps.force_resultant, id0, ps.vel[id1, :] * constant0)
                np.add.at(ps.force_resultant, id1, ps.vel[id0, :] * constant1)


class SvFitForce():
    def __init__(self, magnitude, min_radius, max_radius, mode, use_kdtree=False):

        self.magnitude = np.array(magnitude)
        self.uniform_magnitude = len(magnitude) < 2
        self.min_radius = np.array(min_radius)
        self.max_radius = np.array(max_radius)
        if mode == 'Absolute':
            self.absolute = True
        else:
            self.absolute = False
            if mode == 'Percent':
                self.magnitude /= 100

        self.size_changer = True
        self.use_kdtree = use_kdtree
        if self.use_kdtree:
            self.needs = ['kd_tree', 'max_radius', 'kd_collisions']
            self.add = self.add_kdt
        else:
            self.needs = ['indexes', 'sum_rad', 'dif_v', 'dist', 'collide']
            self.add = self.add_brute_force

    def setup(self, ps):
        ps.aware = True
        self.all_range = np.arange(ps.v_len, dtype=np.int16)

        for need in self.needs:
            ps.relations.needed[need] = True
        if self.uniform_magnitude:
            self.f_magnitude = self.magnitude
        else:
            self.f_magnitude = numpy_fit_long_repeat([self.magnitude], ps.v_len)[0]

    def add_brute_force(self, ps):
        rel = ps.relations
        touch = np.unique(rel.index_inter)
        free = np.setdiff1d(self.all_range, touch)
        u_grow = self.uniform_magnitude
        grow_un, grow_tou = [self.f_magnitude, self.f_magnitude] if u_grow else [self.f_magnitude[free], self.f_magnitude[touch]]
        if self.absolute:
            ps.rads[free] += grow_un
            ps.rads[touch] -= grow_tou
        else:
            ps.rads[free] += grow_un * ps.rads[free]
            ps.rads[touch] -= grow_tou * ps.rads[touch]
        ps.rads = np.clip(ps.rads, self.min_radius, self.max_radius)

    def add_kdt(self, ps):
        relations = ps.relations
        if len(relations.kd_indexes) > 0:
            touch = np.unique(relations.kd_indexes[ps.relations.kd_mask])
            free = np.setdiff1d(self.all_range, touch)
            u_grow = self.uniform_magnitude
            grow_un, grow_tou = [self.f_magnitude, self.f_magnitude] if u_grow else [self.f_magnitude[free], self.f_magnitude[touch]]
            if self.absolute:
                ps.rads[free] += grow_un
                ps.rads[touch] -= grow_tou
            else:
                ps.rads[free] += grow_un * ps.rads[free]
                ps.rads[touch] -= grow_tou * ps.rads[touch]
            ps.rads = np.clip(ps.rads, self.min_radius, self.max_radius)
        else:
            if self.absolute:
                ps.rads += self.f_magnitude

            else:
                ps.rads += self.f_magnitude * ps.rads

            ps.rads = np.clip(ps.rads, self.min_radius, self.max_radius)


class SvDragForce():

    def __init__(self, drag_force, exponent):

        self.magnitude = np.array(drag_force)
        self.surf = 0
        self.exponent = exponent
        self.add = self.add_size_change


    def setup(self, ps):
        size_change = ps.size_change
        if len(self.magnitude) < 2:
            self.ap_magnitude = self.magnitude
        else:
            self.ap_magnitude = numpy_fit_long_repeat([self.magnitude], ps.v_len)[0]
        if len(self.exponent) < 2:
            self.ap_exponent = self.exponent
        else:
            self.ap_exponent = numpy_fit_long_repeat([self.exponent], ps.v_len)[0]

        self.surf = np.power(ps.rads, 2)
        if not size_change:
            self.constant = (self.ap_magnitude * self.surf)[:, np.newaxis]

            self.add = self.add_constant_size
        else:
            self.add = self.add_size_change
            self.ap_magnitude = self.magnitude[:, np.newaxis]

    def add_size_change(self, ps):
        vel_mag = np.linalg.norm(ps.vel, axis=1)
        vel_mag_zero = vel_mag == 0
        vel_mag[vel_mag_zero] = 1
        vel_mag2 = np.power(vel_mag, self.ap_exponent)
        vel_norm = ps.vel/vel_mag[:, np.newaxis]
        self.surf = np.power(ps.rads, 2)
        drag = -vel_norm * self.ap_magnitude * vel_mag2[:, np.newaxis] * self.surf[:, np.newaxis]

        ps.force_resultant += drag

    def add_constant_size(self, ps):

        vel_mag = np.linalg.norm(ps.vel, axis=1)
        vel_mag_zero = vel_mag == 0
        vel_mag[vel_mag_zero] = 1

        vel_mag2 = np.power(vel_mag, self.ap_exponent)
        vel_norm = ps.vel/vel_mag[:, np.newaxis]

        drag = -vel_norm * vel_mag2[:, np.newaxis] *  self.constant

        ps.force_resultant += drag



class SvWorldForce():
    def __init__(self, force, strength, mass_proportional):

        self.strength, self.force = numpy_match_long_repeat([np.array(strength), np.array(force)])

        self.force *= self.strength[:, np.newaxis]
        self.func = self.apply_mass_proportional
        self.mass_proportional = mass_proportional

    def setup(self, ps):
        size_change = ps.size_change
        if len(self.force) > 1:
            self.force2 = numpy_fit_long_repeat([self.force], ps.v_len)[0]
        if size_change and self.mass_proportional:
            self.func = self.apply_mass_proportional

        elif self.mass_proportional:

            self.force_final = self.force * ps.mass[:, np.newaxis]
            self.add = self.apply_dependant
        else:

            self.force_final = self.force
            self.add = self.apply_dependant

    def apply_mass_proportional(self, ps):
        '''apply constant forces'''

        ps.force_resultant += self.force_final * ps.mass[:, np.newaxis]

    def apply_dependant(self, ps):
        '''apply constant forces'''

        ps.force_resultant += self.force_final



class SvFieldForce():
    def __init__(self, field, strength, mass_proportional):

        self.field = field
        self.func = self.apply_mass_proportional
        self.mass_proportional = mass_proportional
        self.strength = np.array(strength)
        if self.mass_proportional:
            self.add_func = self.apply_dependant
        else:
            self.add_func = self.apply_mass_proportional


    def setup(self, ps):
        pass


    def apply_mass_proportional(self, ps):
        '''apply constant forces'''
        if not np.any(self.strength != 0):
            return
        xs = ps.verts[:, 0]
        ys = ps.verts[:, 1]
        zs = ps.verts[:, 2]
        rx, ry, rz = self.field.evaluate_grid(xs, ys, zs)
        ps.force_resultant[:, 0] += rx * ps.mass * self.strength
        ps.force_resultant[:, 1] += ry * ps.mass * self.strength
        ps.force_resultant[:, 2] += rz * ps.mass * self.strength

    def apply_dependant(self, ps):
        '''apply constant forces'''
        if not np.any(self.strength != 0):
            return
        xs = ps.verts[:, 0]
        ys = ps.verts[:, 1]
        zs = ps.verts[:, 2]
        rx, ry, rz = self.field.evaluate_grid(xs, ys, zs)
        ps.force_resultant[:, 0] += rx * self.strength
        ps.force_resultant[:, 1] += ry * self.strength
        ps.force_resultant[:, 2] += rz * self.strength

    def add(self, ps):
        self.add_func(ps)


def pin_type_get(pin_type):

    if isinstance(pin_type[0], str):
        axis = []
        for ch in pin_type[0]:
            if ch == "X":
                axis.append(0)
            elif ch == "Y":
                axis.append(1)
            else:
                axis.append(2)
        return np.array(axis)

    pin_types = [[0, 1, 2], [0, 1], [0, 2], [1, 2], [0], [1], [2]]

    return np.array(pin_types[pin_type[0]])


class SvPinForce():
    def __init__(self, indices, pin_type, pins_goal_pos, use_pins_goal):

        self.pins = np.array(indices)
        self.unpinned = []
        self.use_pins_goal = use_pins_goal
        self.pins_goal_pos = np.array(pins_goal_pos)
        self.pin_force = True
        self.pin_type = pin_type_get(pin_type)

    def setup(self, ps):
        if self.pins.dtype == np.int32:
            if len(self.pins) == len(ps.verts):
                self.pins = self.pins == 1
                self.unpinned = np.invert(self.pins)
            else:
                self.unpinned = np.ones(len(ps.verts), dtype=np.bool_)
                self.unpinned[self.pins] = False
        for axis in self.pin_type:
            ps.vel[self.pins, axis] = 0

    def add(self, ps):
        if self.use_pins_goal:
            ps.verts[self.pins, :] = self.pins_goal_pos
        ps.params["Pins Reactions"][self.pins] = -ps.force_resultant[self.pins]
        for i in range(3):
            if not i in self.pin_type:
                ps.params["Pins Reactions"][:, i] = 0
        for axis in self.pin_type:

            ps.vel[self.pins, axis] = 0
            ps.force_resultant[self.pins, axis] = 0

        ps.params['unpinned'][self.pins] = False


class SvSpringsForce():
    def __init__(self, springs, spring_k, fixed_len, clamp, use_fix_len):
        self.springs = np.array(springs)
        self.spring_k = np.array(spring_k)
        self.use_fix_len = use_fix_len
        self.fixed_len = fixed_len
        self.dist_rest = fixed_len
        self.clamp = np.array(clamp)
        self.use_clamp = np.any(self.clamp > 0)

    def setup(self, ps):
        if self.use_fix_len or self.fixed_len[0] > 0:
            self.dist_rest = self.fixed_len
            self.clamp_distance = self.dist_rest * self.clamp
        else:
            self.dist_rest = calc_rest_length(ps.verts, self.springs)
            self.clamp_distance = self.dist_rest * self.clamp

    def add(self, ps):

        id0 = self.springs[:, 0]
        id1 = self.springs[:, 1]

        dif_v = ps.verts[id0, :] - ps.verts[id1, :]
        dist = np.linalg.norm(dif_v, axis=1)

        if self.use_clamp:
            dif_l = np.clip(dist - self.dist_rest, -self.clamp_distance, self.clamp_distance)
        else:
            dif_l = dist - self.dist_rest
        dist[dist == 0] = 1

        dif_v /= dist[:, np.newaxis]
        force = dif_v * (dif_l * self.spring_k)[:, np.newaxis]

        np.subtract.at(ps.force_resultant, id0, force)
        np.add.at(ps.force_resultant, id1, force)


class SvPolygonsAngleForce():
    def __init__(self, polygons, polygons_k, fixed_angle, use_fix_angle):
        self.polygons = np.array(polygons)
        self.spring_k = np.array(polygons_k)
        self.use_fix_angle = use_fix_angle
        self.fixed_angle = fixed_angle
        self.rest_angles = np.array(fixed_angle)
        self.edges = polygons_to_edges_np([polygons], True, False)[0]
        ad_faces = adjacent_faces_number(self.edges, polygons)
        e_sorted = [sorted(e) for e in self.edges]
        ad_faces = [[] for e in self.edges]
        for idp, pol in enumerate(polygons):
            for edge in zip(pol, pol[1:] + [pol[0]]):
                e_s = sorted(edge)
                if e_s in e_sorted:
                    idx = e_sorted.index(e_s)
                    ad_faces[idx].append(idp)

        self.adjacent_faces = ad_faces
        valid_adjecent_faces = []
        valid_edges = []
        for idx, edg in enumerate(self.adjacent_faces):
            if len(edg) > 1:
                faces_idx = [edg[0], edg[1]]
                valid_adjecent_faces.append(faces_idx)
                valid_edges.append(e_sorted[idx])
            self.np_adjecent_faces = np.array(valid_adjecent_faces)
            self.valid_edges = np.array(valid_edges)

    def setup(self, ps):
        if not self.use_fix_angle:
            pol_v = ps.verts[self.polygons, :]
            pols_normal = pols_normals(pol_v, 1)
            dot_p = np_dot(pols_normal[self.np_adjecent_faces[:, 0]], pols_normal[self.np_adjecent_faces[:, 1]])
            rest_angles = np.arccos(np.clip(dot_p, -1.0, 1.0))

            self.rest_angles = rest_angles

    def add(self, ps):
        pol_v = ps.verts[self.polygons, :]
        pols_normal = pols_normals(pol_v, 1)
        v1 = pols_normal[self.np_adjecent_faces[:, 0]]
        v2 = pols_normal[self.np_adjecent_faces[:, 1]]

        act_angles = np.arccos(np.clip(np_dot(v1, v2), -1.0, 1.0))
        average_vector = (v1 + v2)/2

        force = average_vector * ((self.rest_angles - act_angles) * self.spring_k)[:, np.newaxis]

        np.add.at(ps.force_resultant, self.valid_edges[:, 0], force)
        np.add.at(ps.force_resultant, self.valid_edges[:, 1], force)


class SvEdgesAngleForce():
    def __init__(self, springs, spring_k, fixed_angle, use_fix_angle):
        self.springs = np.array(springs)
        self.spring_k = np.array(spring_k)
        self.use_fix_angle = use_fix_angle
        self.fixed_angle = fixed_angle
        self.rest_ang = fixed_angle

    def setup(self, ps):
        rel=[[] for i in range(ps.v_len)]
        for (e0, e1) in self.springs:
            rel[e0].append(e1)
            rel[e1].append(e0)
        target_v = []
        rest_ang = []
        rel_idx = []

        if self.use_fix_angle or self.fixed_angle[0] > 0:
            self.rest_ang = self.fixed_angle
            for v,r, idx in zip(ps.verts, rel, range(ps.v_len)):
                if len(r) == 2:
                    target_v.append(idx)
                    rel_idx.append(r)
                elif len(r)>2:
                    for idx0, idx1 in zip(r,r[1:]+[r[0]]):
                        target_v.append(idx)
                        rel_idx.append([idx0, idx1])

            self.target_v = np.array(target_v)
            self.rest_ang = self.fixed_angle
            self.rel_idx = np.array(rel_idx)
        else:

            for v,r, idx in zip(ps.verts, rel, range(ps.v_len)):
                if len(r) == 2:
                    vec = ps.verts[r[0]] - v
                    vec2 = ps.verts[r[1]] - v
                    rest_ang.append(angle_between([vec], [vec2])[0])
                    target_v.append(idx)
                    rel_idx.append(r)
                elif len(r)>2:
                    for idx0, idx1 in zip(r,r[1:]+[r[0]]):
                        vec = ps.verts[idx0] - v
                        vec2 = ps.verts[idx1] - v
                        rest_ang.append(angle_between([vec], [vec2])[0])
                        target_v.append(idx)
                        rel_idx.append([idx0, idx1])
            self.target_v = np.array(target_v)
            self.rest_ang = np.array(rest_ang)
            self.rel_idx = np.array(rel_idx)


    def add(self, ps):


        vs = ps.verts[self.target_v, :]
        v1_u = unit_vector(ps.verts[self.rel_idx[:,0]] - vs)
        v2_u = unit_vector(ps.verts[self.rel_idx[:,1]] - vs)
        act_ang = np.arccos(np.clip(np_dot(v1_u, v2_u), -1.0, 1.0))


        average_vector = (v1_u + v2_u)/2
        f = average_vector * ((self.rest_ang - act_ang)*self.spring_k)[:, np.newaxis]
        np.add.at(ps.force_resultant, self.target_v, f)


class SvTimedForce():
    def __init__(self, force, start, end):

        self.force = force
        self.start = start
        self.end = end
        if hasattr(force,'size_changer'):
            self.size_changer = True
        if hasattr(force,'pin_force'):
            self.pin_force = True
            self.use_pins_goal = force.use_pins_goal

    def setup(self, ps):
        self.force.setup(ps)


    def add(self, ps):
        iteration = ps.iteration
        if self.end > iteration >= self.start:

            self.force.add(ps)


class SvObstaclesBVHForce():
    def __init__(self, verts, pols, absorption):


        bvh_safe_check(verts, pols)
        self.bvh = BVHTree.FromPolygons(verts, pols, all_triangles=False, epsilon=0.0)
        self.absorption = 1 - max(min(absorption[0],1),0)

    def setup(self, ps):
        self.nearest = np.zeros(ps.verts.shape, dtype=np.float64)
        self.normals = np.zeros(ps.verts.shape, dtype=np.float64)
        self.distance = np.zeros(len(ps.verts), dtype=np.float64)

    def find_nearest(self, verts):
        v_nearest = self.nearest
        v_normals = self.normals
        v_dist = self.distance
        for v, near, norm, idx in zip(verts, v_nearest, v_normals, range(len(verts))):
            nearest, normal, _, distance = self.bvh.find_nearest(v)

            near[0] = nearest[0]
            near[1] = nearest[1]
            near[2] = nearest[2]
            norm[0] = normal[0]
            norm[1] = normal[1]
            norm[2] = normal[2]
            v_dist[idx] = distance

    def add(self, ps):

        self.find_nearest(ps.verts)
        mask = self.distance < ps.rads
        outer_mask = np_dot(self.nearest[mask] - ps.verts[mask], self.normals[mask]) >= 0
        sign = np.ones(outer_mask.shape, dtype=np.int32)
        sign[outer_mask] = -1
        ps.verts[mask] = self.nearest[mask] + self.normals[mask] * ps.rads[mask, np.newaxis] * sign[:, np.newaxis]
        ps.vel[mask] = reflect(ps.vel[mask], self.normals[mask]) * self.absorption
        ps.force_resultant[mask] = reflect(ps.force_resultant[mask], self.normals[mask]) * self.absorption


class SvInflateForce():
    def __init__(self, pols, inflate):

        np_pols = np.array(pols)
        p_len = len(pols)
        if np_pols.dtype == np.object:
            np_len = np.vectorize(len)
            pols_sides = np_len(np_pols)
            pol_side_max = np.amax(pols_sides)
            np_pols = expand_pols_numpy(np_pols, pol_side_max)
            p_regular = False
        else:
            p_regular = True
            pols_sides = np.array(p_len)
            pol_side_max = len(pols[0])

        self.pols = np_pols
        self.pols_side_max = pol_side_max
        self.pols_sides = pols_sides
        self.inflate = inflate
        self.p_regular = p_regular


    def setup(self, ps):
        pass


    def add(self, ps):

        np_pols = self.pols
        pol_side_max = self.pols_side_max
        pols_sides = self.pols_sides
        inflate = self.inflate
        p_regular = self.p_regular

        pol_v = ps.verts[np_pols, :]
        pols_normal = pols_normals(pol_v, inflate)

        if p_regular:
            p_area = calc_area(pol_side_max, pol_v, pols_normal)[:, np.newaxis]
            for i in range(pol_side_max):
                np.add.at(ps.force_resultant, np_pols[:, i], pols_normal * p_area)

        else:
            p_area = calc_area_var_sides(pol_side_max, pols_sides, pol_v, pols_normal)[:, np.newaxis]
            for i in range(pol_side_max):
                mask = pols_sides > i
                np.add.at(ps.force_resultant, np_pols[mask, i], pols_normal[mask] * p_area[mask])


def limit_speed(np_vel, max_vel):
    ''''constrain speed magniture'''
    vel_mag = np.linalg.norm(np_vel, axis=1)
    vel_exceded = vel_mag > max_vel
    np_vel[vel_exceded] = np_vel[vel_exceded] / vel_mag[vel_exceded, np.newaxis] * max_vel


class PulgaSystem():
    '''Store states'''
    verts, rads, vel, density = [[], [], [], []]
    v_len = []
    params = {}
    def __init__(self, init_params):
        self.main_setup(init_params)
        self.mass = self.density * np.power(self.rads, 3)
        self.random_v = []
        self.force_resultant = np.zeros((self.v_len, 3), dtype=np.float64)
        self.index = np.arange(self.v_len)
        self.size_change = False
        self.aware = False
        self.iteration = 0
        self.aware = False
        self.pinned = False
        self.goal_pins = True
        self.relations = lambda: None
        self.relations.needed = {}
        for force in self.forces:
            if hasattr(force, 'pin_force'):
                self.pinned = True
                self.params['unpinned'] = np.ones(self.v_len, dtype=np.bool_)
                if force.use_pins_goal:
                    self.goal_pins = True
                    break
        if self.pinned:
            self.params["Pins Reactions"] = np.zeros(self.verts.shape, dtype=np.float64)
        else:
            self.params["Pins Reactions"] = np.array([[]])
            self.params['unpinned'] = True

        for force in self.forces:
            if hasattr(force, 'size_changer'):
                self.size_change = True


    def relations_setup(self):
        if 'indexes' in self.relations.needed:
            self.relations.indexes = cross_indices3(self.v_len)
        if 'cross_matrix' in self.relations.needed:
            self.relations.result = np.zeros((self.v_len, self.v_len, 3), dtype=np.float64)
        if not self.size_change:
            if 'sum_rad' in self.relations.needed:
                self.relations.sum_rad = self.rads[self.relations.indexes[:, 0]] + self.rads[self.relations.indexes[:, 1]]
            if 'mass_product' in self.relations.needed:
                self.relations.mass_product = self.mass[self.relations.indexes[:, 0]] * self.mass[self.relations.indexes[:, 1]]

    def relations_update(self):
        if 'max_radius' in self.relations.needed:
            self.relations.max_radius = np.amax(self.rads)
        if 'kd_tree' in self.relations.needed:
            self.relations.kd_tree = scipy.spatial.cKDTree(self.verts)
        if 'kd_collisions' in self.relations.needed:
            indexes = self.relations.kd_tree.query_pairs(r=self.relations.max_radius*2, output_type='ndarray')
            self.relations.kd_indexes = indexes
            if len(indexes) > 0:
                self.relations.kd_dif_v = self.verts[indexes[:, 0], :] - self.verts[indexes[:, 1], :]
                self.relations.kd_sum_rad = self.rads[indexes[:, 0]] + self.rads[indexes[:, 1]]
                self.relations.kd_dist = np.linalg.norm(self.relations.kd_dif_v, axis=1)
                self.relations.kd_mask = self.relations.kd_dist < self.relations.kd_sum_rad
        if self.size_change:
            if 'sum_rad' in self.relations.needed:
                self.relations.sum_rad = self.rads[self.relations.indexes[:, 0]] + self.rads[self.relations.indexes[:, 1]]
            if 'mass_product' in self.relations.needed:
                self.relations.mass_product = self.mass[self.relations.indexes[:, 0]] * self.mass[self.relations.indexes[:, 1]]


        if 'dif_v' in self.relations.needed:
            self.relations.dif_v = self.verts[self.relations.indexes[:, 0], :] - self.verts[self.relations.indexes[:, 1], :]
        if 'dist' in self.relations.needed:
            self.relations.dist = np.linalg.norm(self.relations.dif_v, axis=1)
        if 'collide' in self.relations.needed or 'attract_mask' in self.relations.needed:
            self.relations.mask = self.relations.sum_rad > self.relations.dist
            self.relations.index_inter = self.relations.indexes[self.relations.mask]
        if 'collide' in self.relations.needed:
            self.relations.some_collisions = len(self.relations.index_inter) > 0
        if 'attract_mask' in self.relations.needed:
            self.relations.attract_mask = np.invert(self.relations.mask)

        if 'dist_cor' in self.relations.needed or 'normal_v' in self.relations.needed:
            self.relations.dist_cor = np.clip(self.relations.dist, 1e-6, 1e4)

        if 'normal_v' in self.relations.needed:
            self.relations.normal_v = self.relations.dif_v / self.relations.dist_cor[:, np.newaxis]
        if 'cross_matrix' in self.relations.needed:
            self.relations.result[:] = 0

    def main_setup(self, local_params):
        '''prepare main data'''
        params = self.params
        initial_pos, _, rads_in, initial_vel, max_vel, density, forces = local_params
        self.forces = forces
        self.verts = np.array(initial_pos)
        self.rads = np.array(rads_in, dtype=np.float64)
        self.vel = np.array(initial_vel, dtype=np.float64)
        self.v_len = len(self.verts)
        params['max_vel'] = np.array(max_vel)
        self.rads, self.vel = numpy_fit_long_repeat([self.rads, self.vel], self.v_len)

        if len(params['max_vel']) > 1:
            params['max_vel'] = numpy_fit_long_repeat([params['max_vel']], self.v_len)[0]

        self.density = np.array(density)
        if len(density) > 1:
            self.density = numpy_fit_long_repeat([self.density], self.v_len)[0]

    def hard_update(self, cache):
        '''replace verts, rads and vel (in NumPy)'''

        size_change = self.size_change
        verts, rads, vel, react = cache
        if len(verts) == self.v_len:

            if self.pinned and self.goal_pins:
                unpinned = self.params['unpinned']
                self.verts[unpinned] = verts[unpinned]
            else:
                self.verts = verts
            self.vel = vel
            if size_change:
                self.rads = rads
                self.mass = self.density * np.power(self.rads, 3)

    def hard_update_list(self, cache):
        '''replace verts, rads and velocity'''
        size_change = self.size_change
        verts, rads, vel, react = cache
        if type(verts) == list:
            if len(verts) == self.v_len:
                if self.pinned and self.goal_pins:
                    unpinned = self.params['unpinned']
                    self.verts[unpinned] = np.array(verts)[unpinned]
                else:
                    self.verts = np.array(verts)
                if size_change:
                    self.rads = np.array(rads)
                    self.mass = self.density * np.power(self.rads, 3)
                self.vel = np.array(vel)
        else:
            self.hard_update(cache)

    def apply_forces(self):
        '''resultant --> acceleration --> speed --> position'''
        acc = self.force_resultant / self.mass[:, np.newaxis]
        self.vel += acc

        if np.any(self.params['max_vel']) > 0:
            limit_speed(self.vel, self.params['max_vel'])

        self.verts += self.vel
        self.force_resultant[:] = 0

    def setup_forces(self):
        for force in self.forces:
            if hasattr(force, 'size_changer'):
                self.size_change = True
                break

        for force in self.forces:
            force.setup(self)
        if self.aware:
            self.relations_setup()

    def iterate(self):
        if self.aware:
            self.relations_update()
        if self.pinned:
            self.params['unpinned'][:] = True
        for force in self.forces:

            force.add(self)
        self.iteration += 1
        self.apply_forces()


def local_dict(dictionaries, name):
    '''get all related to the name'''
    return [dictionaries[0][name], dictionaries[1][name], dictionaries[2][name]]


def pulga_system_init(parameters, gates, out_lists, cache):
    '''the main function of the engine'''

    ps = PulgaSystem(parameters)

    iterations = parameters[1]
    iterations_max = max(iterations)
    iterations_rec = [i-1 for i in iterations]
    out_params = [iterations_rec, ps, gates["output"], out_lists]
    ps.setup_forces()

    if gates["accumulate"] and len(cache) > 0:
        ps.hard_update_list(cache)

    iterate(iterations_max, out_params)

    return ps.verts, ps.rads, ps.vel, ps.params["Pins Reactions"][np.invert(ps.params['unpinned'])]


def iterate(iterations_max, out_params):
    ''' execute repeatedly the defined force map'''
    ps = out_params[1]

    for it in range(iterations_max):
        ps.iterate()
        output_data(it, out_params)


def output_data(it, params):
    '''if is pertinent output the data'''
    iterations_rec, ps, gate, out_lists = params
    record_iteration = it in iterations_rec
    if record_iteration:
        data_out = prepare_output_data(ps, gate)
        record_data(data_out, out_lists)


def prepare_output_data(ps, use_numpy_out):
    '''prepare data to output'''

    if use_numpy_out:
        return [ps.verts, ps.rads, ps.vel, ps.params["Pins Reactions"][np.invert(ps.params['unpinned'])]]

    return [ps.verts.tolist(), ps.rads.tolist(), ps.vel.tolist(), ps.params["Pins Reactions"][np.invert(ps.params['unpinned'])].tolist()]


def record_data(data_out, out_lists):
    '''save data to main list'''
    verts_out, rads_out, velocity_out, reactions_out = out_lists
    new_verts, new_rad, new_vel, new_react = data_out
    verts_out.append(new_verts)
    rads_out.append(new_rad)
    velocity_out.append(new_vel)
    reactions_out.append(new_react)

Functions

def bvh_safe_check(verts, pols)
Expand source code
def bvh_safe_check(verts, pols):
    len_v = len(verts)
    for p in pols:
        for c in p:
            if c > len_v:
                raise Exception(f"Index {c} should be less than vertices length ({len_v})")
def calc_area(pol_side_max, pol_v, pols_normal)

calculate polygons area (equal sided polygons)

Expand source code
def calc_area(pol_side_max, pol_v, pols_normal):
    '''calculate polygons area (equal sided polygons)'''
    prod = np.zeros((pol_side_max, len(pols_normal), 3), dtype=np.float32)
    for i in range(pol_side_max):
        prod[i, :, :] = np.cross(pol_v[:, i, :], pol_v[:, (i + 1) % pol_side_max, :])
    tot = np.sum(prod, axis=0)
    return abs(np.sum(tot * pols_normal, axis=1) / 2)
def calc_area_var_sides(pol_side_max, pols_sides, pol_v, pols_normal)

calculate polygons area (variable sided polygons)

Expand source code
def calc_area_var_sides(pol_side_max, pols_sides, pol_v, pols_normal):
    '''calculate polygons area (variable sided polygons)'''
    prod = np.zeros((pol_side_max, len(pols_sides), 3), dtype=np.float32)
    for i in range(pol_side_max):
        mask = pols_sides > i
        prod[i, mask, :] = np.cross(pol_v[mask, i, :], pol_v[mask, (i + 1) % pol_side_max, :])

    tot = np.sum(prod, axis=0)
    return abs(np.sum(tot * pols_normal, axis=1) / 2)
def calc_rest_length(np_verts, np_springs)

calculate edges length

Expand source code
def calc_rest_length(np_verts, np_springs):
    '''calculate edges length'''
    pairs_springs = np_verts[np_springs, :]
    vect_rest = (pairs_springs[:, 0, :] - pairs_springs[:, 1, :])
    dist_rest = np.linalg.norm(vect_rest, axis=1)
    return dist_rest
def cross_indices3(n)

create crossed indices

Expand source code
def cross_indices3(n):
    '''create crossed indices'''

    nu = np.sum(np.arange(n, dtype=np.int64))
    ind = np.zeros((nu, 2), dtype=np.int16)
    c = 0
    for i in range(n-1):
        l = n-i-1
        np_i = np.full(n-i-1, i, dtype=np.int32)
        np_j = np.arange(i+1, n, dtype=np.int32)
        np_a = np.stack((np_i, np_j), axis=-1)
        ind[c:c+l, :] = np_a
        c += l

    return ind
def expand_pols_numpy(p, len_max)

to fit variable sided polygons in one array (cycling)

Expand source code
def expand_pols_numpy(p, len_max):
    '''to fit variable sided polygons in one array (cycling)'''
    np_match_cycle = np.vectorize(match_cylce)
    np_match_cycle(p, len_max)
    new_pols = np.zeros((len(p), len_max), dtype=np.int32)
    for i in range(len(p)):
        new_pols[i, :] = p[i]
    return new_pols
def iterate(iterations_max, out_params)

execute repeatedly the defined force map

Expand source code
def iterate(iterations_max, out_params):
    ''' execute repeatedly the defined force map'''
    ps = out_params[1]

    for it in range(iterations_max):
        ps.iterate()
        output_data(it, out_params)
def limit_speed(np_vel, max_vel)

'constrain speed magniture

Expand source code
def limit_speed(np_vel, max_vel):
    ''''constrain speed magniture'''
    vel_mag = np.linalg.norm(np_vel, axis=1)
    vel_exceded = vel_mag > max_vel
    np_vel[vel_exceded] = np_vel[vel_exceded] / vel_mag[vel_exceded, np.newaxis] * max_vel
def local_dict(dictionaries, name)

get all related to the name

Expand source code
def local_dict(dictionaries, name):
    '''get all related to the name'''
    return [dictionaries[0][name], dictionaries[1][name], dictionaries[2][name]]
def match_cylce(p, n)

append cylcing till have n items

Expand source code
def match_cylce(p, n):
    '''append cylcing till have n items'''
    difference = n - len(p)
    for i in range(difference):
        p.append(p[i % len(p)])
def np_dot(u, v, axis=1)
Expand source code
def np_dot(u, v, axis=1):
    return np.sum(u * v, axis=axis)
def numpy_fit_long_repeat(p, maxl)

match list length by repeating last one or removing end

Expand source code
def numpy_fit_long_repeat(p, maxl):
    '''match list length by repeating last one or removing end'''
    q = []
    for g in p:
        difl = maxl - g.shape[0]
        if difl > 0:
            rr = np.repeat(g[np.newaxis, -1], difl, axis=0)
            g = np.concatenate((g, rr))
        if difl < 0:
            g = g[:maxl]
        q.append(g)
    return q
def numpy_match_long_repeat(p)

match list length by repeating last one

Expand source code
def numpy_match_long_repeat(p):
    '''match list length by repeating last one'''
    q = []
    maxl = 0
    for g in p:
        maxl = max(maxl, g.shape[0])
    for g in p:
        difl = maxl - g.shape[0]
        if difl > 0:
            rr = np.repeat(g[np.newaxis, -1], difl, axis=0)
            g = np.concatenate((g, rr))
        q.append(g)
    return q
def output_data(it, params)

if is pertinent output the data

Expand source code
def output_data(it, params):
    '''if is pertinent output the data'''
    iterations_rec, ps, gate, out_lists = params
    record_iteration = it in iterations_rec
    if record_iteration:
        data_out = prepare_output_data(ps, gate)
        record_data(data_out, out_lists)
def pin_type_get(pin_type)
Expand source code
def pin_type_get(pin_type):

    if isinstance(pin_type[0], str):
        axis = []
        for ch in pin_type[0]:
            if ch == "X":
                axis.append(0)
            elif ch == "Y":
                axis.append(1)
            else:
                axis.append(2)
        return np.array(axis)

    pin_types = [[0, 1, 2], [0, 1], [0, 2], [1, 2], [0], [1], [2]]

    return np.array(pin_types[pin_type[0]])
def pols_normals(pol_v, mag)

get actual polygons normal with controlled magnitude

Expand source code
def pols_normals(pol_v, mag):
    '''get actual polygons normal with controlled magnitude'''
    v1 = pol_v[:, 1, :] - pol_v[:, 0, :]
    v2 = pol_v[:, 2, :] - pol_v[:, 0, :]
    pols_normal = np.cross(v1, v2)
    pols_normal_d = np.linalg.norm(pols_normal, axis=1)
    return pols_normal / pols_normal_d[:, np.newaxis] * mag
def prepare_output_data(ps, use_numpy_out)

prepare data to output

Expand source code
def prepare_output_data(ps, use_numpy_out):
    '''prepare data to output'''

    if use_numpy_out:
        return [ps.verts, ps.rads, ps.vel, ps.params["Pins Reactions"][np.invert(ps.params['unpinned'])]]

    return [ps.verts.tolist(), ps.rads.tolist(), ps.vel.tolist(), ps.params["Pins Reactions"][np.invert(ps.params['unpinned'])].tolist()]
def project_on_plane(vects, normal)
Expand source code
def project_on_plane(vects, normal):
    distance = np.sum(vects * normal, axis=1)
    return vects - normal * distance[:,np.newaxis]
def pulga_system_init(parameters, gates, out_lists, cache)

the main function of the engine

Expand source code
def pulga_system_init(parameters, gates, out_lists, cache):
    '''the main function of the engine'''

    ps = PulgaSystem(parameters)

    iterations = parameters[1]
    iterations_max = max(iterations)
    iterations_rec = [i-1 for i in iterations]
    out_params = [iterations_rec, ps, gates["output"], out_lists]
    ps.setup_forces()

    if gates["accumulate"] and len(cache) > 0:
        ps.hard_update_list(cache)

    iterate(iterations_max, out_params)

    return ps.verts, ps.rads, ps.vel, ps.params["Pins Reactions"][np.invert(ps.params['unpinned'])]
def record_data(data_out, out_lists)

save data to main list

Expand source code
def record_data(data_out, out_lists):
    '''save data to main list'''
    verts_out, rads_out, velocity_out, reactions_out = out_lists
    new_verts, new_rad, new_vel, new_react = data_out
    verts_out.append(new_verts)
    rads_out.append(new_rad)
    velocity_out.append(new_vel)
    reactions_out.append(new_react)
def reflect(v1, mirror)
Expand source code
def reflect(v1, mirror):

    dot2 = 2 * np.sum(mirror * v1, axis=1)
    return v1 - (dot2[:, np.newaxis] * mirror)

Classes

class PulgaSystem (init_params)

Store states

Expand source code
class PulgaSystem():
    '''Store states'''
    verts, rads, vel, density = [[], [], [], []]
    v_len = []
    params = {}
    def __init__(self, init_params):
        self.main_setup(init_params)
        self.mass = self.density * np.power(self.rads, 3)
        self.random_v = []
        self.force_resultant = np.zeros((self.v_len, 3), dtype=np.float64)
        self.index = np.arange(self.v_len)
        self.size_change = False
        self.aware = False
        self.iteration = 0
        self.aware = False
        self.pinned = False
        self.goal_pins = True
        self.relations = lambda: None
        self.relations.needed = {}
        for force in self.forces:
            if hasattr(force, 'pin_force'):
                self.pinned = True
                self.params['unpinned'] = np.ones(self.v_len, dtype=np.bool_)
                if force.use_pins_goal:
                    self.goal_pins = True
                    break
        if self.pinned:
            self.params["Pins Reactions"] = np.zeros(self.verts.shape, dtype=np.float64)
        else:
            self.params["Pins Reactions"] = np.array([[]])
            self.params['unpinned'] = True

        for force in self.forces:
            if hasattr(force, 'size_changer'):
                self.size_change = True


    def relations_setup(self):
        if 'indexes' in self.relations.needed:
            self.relations.indexes = cross_indices3(self.v_len)
        if 'cross_matrix' in self.relations.needed:
            self.relations.result = np.zeros((self.v_len, self.v_len, 3), dtype=np.float64)
        if not self.size_change:
            if 'sum_rad' in self.relations.needed:
                self.relations.sum_rad = self.rads[self.relations.indexes[:, 0]] + self.rads[self.relations.indexes[:, 1]]
            if 'mass_product' in self.relations.needed:
                self.relations.mass_product = self.mass[self.relations.indexes[:, 0]] * self.mass[self.relations.indexes[:, 1]]

    def relations_update(self):
        if 'max_radius' in self.relations.needed:
            self.relations.max_radius = np.amax(self.rads)
        if 'kd_tree' in self.relations.needed:
            self.relations.kd_tree = scipy.spatial.cKDTree(self.verts)
        if 'kd_collisions' in self.relations.needed:
            indexes = self.relations.kd_tree.query_pairs(r=self.relations.max_radius*2, output_type='ndarray')
            self.relations.kd_indexes = indexes
            if len(indexes) > 0:
                self.relations.kd_dif_v = self.verts[indexes[:, 0], :] - self.verts[indexes[:, 1], :]
                self.relations.kd_sum_rad = self.rads[indexes[:, 0]] + self.rads[indexes[:, 1]]
                self.relations.kd_dist = np.linalg.norm(self.relations.kd_dif_v, axis=1)
                self.relations.kd_mask = self.relations.kd_dist < self.relations.kd_sum_rad
        if self.size_change:
            if 'sum_rad' in self.relations.needed:
                self.relations.sum_rad = self.rads[self.relations.indexes[:, 0]] + self.rads[self.relations.indexes[:, 1]]
            if 'mass_product' in self.relations.needed:
                self.relations.mass_product = self.mass[self.relations.indexes[:, 0]] * self.mass[self.relations.indexes[:, 1]]


        if 'dif_v' in self.relations.needed:
            self.relations.dif_v = self.verts[self.relations.indexes[:, 0], :] - self.verts[self.relations.indexes[:, 1], :]
        if 'dist' in self.relations.needed:
            self.relations.dist = np.linalg.norm(self.relations.dif_v, axis=1)
        if 'collide' in self.relations.needed or 'attract_mask' in self.relations.needed:
            self.relations.mask = self.relations.sum_rad > self.relations.dist
            self.relations.index_inter = self.relations.indexes[self.relations.mask]
        if 'collide' in self.relations.needed:
            self.relations.some_collisions = len(self.relations.index_inter) > 0
        if 'attract_mask' in self.relations.needed:
            self.relations.attract_mask = np.invert(self.relations.mask)

        if 'dist_cor' in self.relations.needed or 'normal_v' in self.relations.needed:
            self.relations.dist_cor = np.clip(self.relations.dist, 1e-6, 1e4)

        if 'normal_v' in self.relations.needed:
            self.relations.normal_v = self.relations.dif_v / self.relations.dist_cor[:, np.newaxis]
        if 'cross_matrix' in self.relations.needed:
            self.relations.result[:] = 0

    def main_setup(self, local_params):
        '''prepare main data'''
        params = self.params
        initial_pos, _, rads_in, initial_vel, max_vel, density, forces = local_params
        self.forces = forces
        self.verts = np.array(initial_pos)
        self.rads = np.array(rads_in, dtype=np.float64)
        self.vel = np.array(initial_vel, dtype=np.float64)
        self.v_len = len(self.verts)
        params['max_vel'] = np.array(max_vel)
        self.rads, self.vel = numpy_fit_long_repeat([self.rads, self.vel], self.v_len)

        if len(params['max_vel']) > 1:
            params['max_vel'] = numpy_fit_long_repeat([params['max_vel']], self.v_len)[0]

        self.density = np.array(density)
        if len(density) > 1:
            self.density = numpy_fit_long_repeat([self.density], self.v_len)[0]

    def hard_update(self, cache):
        '''replace verts, rads and vel (in NumPy)'''

        size_change = self.size_change
        verts, rads, vel, react = cache
        if len(verts) == self.v_len:

            if self.pinned and self.goal_pins:
                unpinned = self.params['unpinned']
                self.verts[unpinned] = verts[unpinned]
            else:
                self.verts = verts
            self.vel = vel
            if size_change:
                self.rads = rads
                self.mass = self.density * np.power(self.rads, 3)

    def hard_update_list(self, cache):
        '''replace verts, rads and velocity'''
        size_change = self.size_change
        verts, rads, vel, react = cache
        if type(verts) == list:
            if len(verts) == self.v_len:
                if self.pinned and self.goal_pins:
                    unpinned = self.params['unpinned']
                    self.verts[unpinned] = np.array(verts)[unpinned]
                else:
                    self.verts = np.array(verts)
                if size_change:
                    self.rads = np.array(rads)
                    self.mass = self.density * np.power(self.rads, 3)
                self.vel = np.array(vel)
        else:
            self.hard_update(cache)

    def apply_forces(self):
        '''resultant --> acceleration --> speed --> position'''
        acc = self.force_resultant / self.mass[:, np.newaxis]
        self.vel += acc

        if np.any(self.params['max_vel']) > 0:
            limit_speed(self.vel, self.params['max_vel'])

        self.verts += self.vel
        self.force_resultant[:] = 0

    def setup_forces(self):
        for force in self.forces:
            if hasattr(force, 'size_changer'):
                self.size_change = True
                break

        for force in self.forces:
            force.setup(self)
        if self.aware:
            self.relations_setup()

    def iterate(self):
        if self.aware:
            self.relations_update()
        if self.pinned:
            self.params['unpinned'][:] = True
        for force in self.forces:

            force.add(self)
        self.iteration += 1
        self.apply_forces()

Class variables

var density
var params
var rads
var v_len
var vel
var verts

Methods

def apply_forces(self)

resultant –> acceleration –> speed –> position

Expand source code
def apply_forces(self):
    '''resultant --> acceleration --> speed --> position'''
    acc = self.force_resultant / self.mass[:, np.newaxis]
    self.vel += acc

    if np.any(self.params['max_vel']) > 0:
        limit_speed(self.vel, self.params['max_vel'])

    self.verts += self.vel
    self.force_resultant[:] = 0
def hard_update(self, cache)

replace verts, rads and vel (in NumPy)

Expand source code
def hard_update(self, cache):
    '''replace verts, rads and vel (in NumPy)'''

    size_change = self.size_change
    verts, rads, vel, react = cache
    if len(verts) == self.v_len:

        if self.pinned and self.goal_pins:
            unpinned = self.params['unpinned']
            self.verts[unpinned] = verts[unpinned]
        else:
            self.verts = verts
        self.vel = vel
        if size_change:
            self.rads = rads
            self.mass = self.density * np.power(self.rads, 3)
def hard_update_list(self, cache)

replace verts, rads and velocity

Expand source code
def hard_update_list(self, cache):
    '''replace verts, rads and velocity'''
    size_change = self.size_change
    verts, rads, vel, react = cache
    if type(verts) == list:
        if len(verts) == self.v_len:
            if self.pinned and self.goal_pins:
                unpinned = self.params['unpinned']
                self.verts[unpinned] = np.array(verts)[unpinned]
            else:
                self.verts = np.array(verts)
            if size_change:
                self.rads = np.array(rads)
                self.mass = self.density * np.power(self.rads, 3)
            self.vel = np.array(vel)
    else:
        self.hard_update(cache)
def iterate(self)
Expand source code
def iterate(self):
    if self.aware:
        self.relations_update()
    if self.pinned:
        self.params['unpinned'][:] = True
    for force in self.forces:

        force.add(self)
    self.iteration += 1
    self.apply_forces()
def main_setup(self, local_params)

prepare main data

Expand source code
def main_setup(self, local_params):
    '''prepare main data'''
    params = self.params
    initial_pos, _, rads_in, initial_vel, max_vel, density, forces = local_params
    self.forces = forces
    self.verts = np.array(initial_pos)
    self.rads = np.array(rads_in, dtype=np.float64)
    self.vel = np.array(initial_vel, dtype=np.float64)
    self.v_len = len(self.verts)
    params['max_vel'] = np.array(max_vel)
    self.rads, self.vel = numpy_fit_long_repeat([self.rads, self.vel], self.v_len)

    if len(params['max_vel']) > 1:
        params['max_vel'] = numpy_fit_long_repeat([params['max_vel']], self.v_len)[0]

    self.density = np.array(density)
    if len(density) > 1:
        self.density = numpy_fit_long_repeat([self.density], self.v_len)[0]
def relations_setup(self)
Expand source code
def relations_setup(self):
    if 'indexes' in self.relations.needed:
        self.relations.indexes = cross_indices3(self.v_len)
    if 'cross_matrix' in self.relations.needed:
        self.relations.result = np.zeros((self.v_len, self.v_len, 3), dtype=np.float64)
    if not self.size_change:
        if 'sum_rad' in self.relations.needed:
            self.relations.sum_rad = self.rads[self.relations.indexes[:, 0]] + self.rads[self.relations.indexes[:, 1]]
        if 'mass_product' in self.relations.needed:
            self.relations.mass_product = self.mass[self.relations.indexes[:, 0]] * self.mass[self.relations.indexes[:, 1]]
def relations_update(self)
Expand source code
def relations_update(self):
    if 'max_radius' in self.relations.needed:
        self.relations.max_radius = np.amax(self.rads)
    if 'kd_tree' in self.relations.needed:
        self.relations.kd_tree = scipy.spatial.cKDTree(self.verts)
    if 'kd_collisions' in self.relations.needed:
        indexes = self.relations.kd_tree.query_pairs(r=self.relations.max_radius*2, output_type='ndarray')
        self.relations.kd_indexes = indexes
        if len(indexes) > 0:
            self.relations.kd_dif_v = self.verts[indexes[:, 0], :] - self.verts[indexes[:, 1], :]
            self.relations.kd_sum_rad = self.rads[indexes[:, 0]] + self.rads[indexes[:, 1]]
            self.relations.kd_dist = np.linalg.norm(self.relations.kd_dif_v, axis=1)
            self.relations.kd_mask = self.relations.kd_dist < self.relations.kd_sum_rad
    if self.size_change:
        if 'sum_rad' in self.relations.needed:
            self.relations.sum_rad = self.rads[self.relations.indexes[:, 0]] + self.rads[self.relations.indexes[:, 1]]
        if 'mass_product' in self.relations.needed:
            self.relations.mass_product = self.mass[self.relations.indexes[:, 0]] * self.mass[self.relations.indexes[:, 1]]


    if 'dif_v' in self.relations.needed:
        self.relations.dif_v = self.verts[self.relations.indexes[:, 0], :] - self.verts[self.relations.indexes[:, 1], :]
    if 'dist' in self.relations.needed:
        self.relations.dist = np.linalg.norm(self.relations.dif_v, axis=1)
    if 'collide' in self.relations.needed or 'attract_mask' in self.relations.needed:
        self.relations.mask = self.relations.sum_rad > self.relations.dist
        self.relations.index_inter = self.relations.indexes[self.relations.mask]
    if 'collide' in self.relations.needed:
        self.relations.some_collisions = len(self.relations.index_inter) > 0
    if 'attract_mask' in self.relations.needed:
        self.relations.attract_mask = np.invert(self.relations.mask)

    if 'dist_cor' in self.relations.needed or 'normal_v' in self.relations.needed:
        self.relations.dist_cor = np.clip(self.relations.dist, 1e-6, 1e4)

    if 'normal_v' in self.relations.needed:
        self.relations.normal_v = self.relations.dif_v / self.relations.dist_cor[:, np.newaxis]
    if 'cross_matrix' in self.relations.needed:
        self.relations.result[:] = 0
def setup_forces(self)
Expand source code
def setup_forces(self):
    for force in self.forces:
        if hasattr(force, 'size_changer'):
            self.size_change = True
            break

    for force in self.forces:
        force.setup(self)
    if self.aware:
        self.relations_setup()
class SvAlignForce (strength, decay, max_distance, use_kdtree=False)
Expand source code
class SvAlignForce():
    def __init__(self, strength, decay, max_distance, use_kdtree=False):

        self.strength = np.array(strength)
        self.uniform_strength = len(strength) < 2
        self.decay = decay[0]


        self.f_strength = self.strength
        self.max_distance = np.array(max_distance[0])
        self.use_kdtree = use_kdtree
        if self.use_kdtree:
            self.needs = ['kd_tree']
            self.add = self.add_kdt
        else:
            self.needs = ['indexes', 'dif_v', 'dist', 'dist_cor']
            self.add = self.add_brute_force


    def setup(self, ps):

        ps.aware = True
        for need in self.needs:
            ps.relations.needed[need] = True
        if self.uniform_strength:
            self.f_strength = self.strength
        else:
            self.f_strength = numpy_fit_long_repeat([self.strength], ps.v_len)[0]



    def add_brute_force(self, ps):
        relations = ps.relations
        mask = relations.dist_cor < self.max_distance
        id0 = relations.indexes[mask, 0]
        id1 = relations.indexes[mask, 1]
        dist2 = np.power(relations.dist_cor[mask], self.decay)


        if self.uniform_strength:
            constant = (self.f_strength / (dist2 * ps.v_len))[:, np.newaxis]
            np.add.at(ps.force_resultant, id0, ps.vel[id1, :] * constant)
            np.add.at(ps.force_resultant, id1, ps.vel[id0, :] * constant)

        else:
            constant0 = (self.f_strength[id0] / (dist2 * ps.v_len))[:, np.newaxis]
            constant1 = (self.f_strength[id1] / (dist2 * ps.v_len))[:, np.newaxis]
            np.add.at(ps.force_resultant, id0, ps.vel[id1, :] * constant0)
            np.add.at(ps.force_resultant, id1, ps.vel[id0, :] * constant1)

    def add_kdt(self, ps):

        relations = ps.relations
        indexes = relations.kd_tree.query_pairs(r=self.max_distance, output_type='ndarray')
        if len(indexes) > 0:
            dif_v = ps.verts[indexes[:, 0], :] - ps.verts[indexes[:, 1], :]
            dist = np.linalg.norm(dif_v, axis=1)
            dist_cor = np.clip(dist, 1e-6, 1e4)
            id0 = indexes[:, 0]
            id1 = indexes[:, 1]
            dist2 = np.power(dist_cor, self.decay)


            if self.uniform_strength:
                constant = (self.f_strength / (dist2 * ps.v_len))[:, np.newaxis]
                np.add.at(ps.force_resultant, id0, ps.vel[id1, :] * constant)
                np.add.at(ps.force_resultant, id1, ps.vel[id0, :] * constant)

            else:
                constant0 = (self.f_strength[id0] / (dist2 * ps.v_len))[:, np.newaxis]
                constant1 = (self.f_strength[id1] / (dist2 * ps.v_len))[:, np.newaxis]
                np.add.at(ps.force_resultant, id0, ps.vel[id1, :] * constant0)
                np.add.at(ps.force_resultant, id1, ps.vel[id0, :] * constant1)

Methods

def add_brute_force(self, ps)
Expand source code
def add_brute_force(self, ps):
    relations = ps.relations
    mask = relations.dist_cor < self.max_distance
    id0 = relations.indexes[mask, 0]
    id1 = relations.indexes[mask, 1]
    dist2 = np.power(relations.dist_cor[mask], self.decay)


    if self.uniform_strength:
        constant = (self.f_strength / (dist2 * ps.v_len))[:, np.newaxis]
        np.add.at(ps.force_resultant, id0, ps.vel[id1, :] * constant)
        np.add.at(ps.force_resultant, id1, ps.vel[id0, :] * constant)

    else:
        constant0 = (self.f_strength[id0] / (dist2 * ps.v_len))[:, np.newaxis]
        constant1 = (self.f_strength[id1] / (dist2 * ps.v_len))[:, np.newaxis]
        np.add.at(ps.force_resultant, id0, ps.vel[id1, :] * constant0)
        np.add.at(ps.force_resultant, id1, ps.vel[id0, :] * constant1)
def add_kdt(self, ps)
Expand source code
def add_kdt(self, ps):

    relations = ps.relations
    indexes = relations.kd_tree.query_pairs(r=self.max_distance, output_type='ndarray')
    if len(indexes) > 0:
        dif_v = ps.verts[indexes[:, 0], :] - ps.verts[indexes[:, 1], :]
        dist = np.linalg.norm(dif_v, axis=1)
        dist_cor = np.clip(dist, 1e-6, 1e4)
        id0 = indexes[:, 0]
        id1 = indexes[:, 1]
        dist2 = np.power(dist_cor, self.decay)


        if self.uniform_strength:
            constant = (self.f_strength / (dist2 * ps.v_len))[:, np.newaxis]
            np.add.at(ps.force_resultant, id0, ps.vel[id1, :] * constant)
            np.add.at(ps.force_resultant, id1, ps.vel[id0, :] * constant)

        else:
            constant0 = (self.f_strength[id0] / (dist2 * ps.v_len))[:, np.newaxis]
            constant1 = (self.f_strength[id1] / (dist2 * ps.v_len))[:, np.newaxis]
            np.add.at(ps.force_resultant, id0, ps.vel[id1, :] * constant0)
            np.add.at(ps.force_resultant, id1, ps.vel[id0, :] * constant1)
def setup(self, ps)
Expand source code
def setup(self, ps):

    ps.aware = True
    for need in self.needs:
        ps.relations.needed[need] = True
    if self.uniform_strength:
        self.f_strength = self.strength
    else:
        self.f_strength = numpy_fit_long_repeat([self.strength], ps.v_len)[0]
class SvAttractionForce (magnitude, decay, max_distance, stop_on_collide=False, use_kdtree=False)
Expand source code
class SvAttractionForce():
    def __init__(self, magnitude, decay, max_distance, stop_on_collide=False, use_kdtree=False):

        self.magnitude = np.array(magnitude)
        self.uniform_magnitude = len(magnitude) < 2

        self.decay = np.array(decay[0])
        self.use_kdtree = use_kdtree
        self.max_distance = max_distance[0]
        self.stop_on_collide = stop_on_collide
        if self.use_kdtree:
            self.needs = ['kd_tree']
            self.add = self.add_kdt
        else:
            self.needs = ['indexes', 'sum_rad', 'mass_product', 'dif_v', 'dist', 'dist_cor', 'normal_v']
            if self.stop_on_collide:
                self.needs.append('attract_mask')
            self.add = self.add_brute_force

    def setup(self, ps):
        ps.aware = True
        for need in self.needs:
            ps.relations.needed[need] = True
        if self.uniform_magnitude:
            self.f_magnitude = self.magnitude
        else:
            self.f_magnitude = numpy_fit_long_repeat([self.magnitude], ps.v_len)[0]

    def add_brute_force(self, ps):
        relations = ps.relations
        if self.stop_on_collide:
            mask = np.all((relations.dist < self.max_distance, relations.attract_mask), axis=0)
        else:
            mask = relations.dist < self.max_distance
        index_non_inter = ps.relations.indexes[mask]
        id0 = index_non_inter[:, 0]
        id1 = index_non_inter[:, 1]
        dist2 = np.power(relations.dist[mask], self.decay)[:, np.newaxis]
        normal = relations.normal_v[mask]
        direction = normal / dist2 * relations.mass_product[mask, np.newaxis]


        att = self.f_magnitude
        len0, len1 = [att, att] if self.uniform_magnitude else [att[id1], att[id0]]

        np.add.at(ps.force_resultant, id0, -direction * len0)
        np.add.at(ps.force_resultant, id1, direction * len1)

    def add_kdt(self, ps):
        relations = ps.relations
        indexes = relations.kd_tree.query_pairs(r=self.max_distance, output_type='ndarray')
        if len(indexes) > 0:

            id0 = indexes[:, 0]
            id1 = indexes[:, 1]
            dif_v = ps.verts[id0, :] - ps.verts[id1, :]

            dist = np.linalg.norm(dif_v, axis=1)
            if self.stop_on_collide:
                collide_mask = dist > ps.mass[id0] * ps.mass[id1]
                dist_cor = np.clip(dist[collide_mask], 1e-6, 1e4)
                dist2 = np.power(dist[collide_mask], self.decay)[:, np.newaxis]
                normal_v = dif_v[collide_mask] / dist_cor[:, np.newaxis]
                id0 = indexes[collide_mask, 0]
                id1 = indexes[collide_mask, 1]
                mass_product = (ps.mass[id0] * ps.mass[id1])
            else:

                mass_product = ps.mass[id0] * ps.mass[id1]
                dist_cor = np.clip(dist, 1e-6, 1e4)
                dist2 = np.power(dist, self.decay)[:, np.newaxis]
                normal_v = dif_v / dist_cor[:, np.newaxis]

            direction = normal_v / dist2 * mass_product[:, np.newaxis]

            att = self.f_magnitude
            len0, len1 = [att, att] if self.uniform_magnitude else [att[id1], att[id0]]
            np.add.at(ps.force_resultant, id0, -direction * len0)
            np.add.at(ps.force_resultant, id1, direction * len1)

Methods

def add_brute_force(self, ps)
Expand source code
def add_brute_force(self, ps):
    relations = ps.relations
    if self.stop_on_collide:
        mask = np.all((relations.dist < self.max_distance, relations.attract_mask), axis=0)
    else:
        mask = relations.dist < self.max_distance
    index_non_inter = ps.relations.indexes[mask]
    id0 = index_non_inter[:, 0]
    id1 = index_non_inter[:, 1]
    dist2 = np.power(relations.dist[mask], self.decay)[:, np.newaxis]
    normal = relations.normal_v[mask]
    direction = normal / dist2 * relations.mass_product[mask, np.newaxis]


    att = self.f_magnitude
    len0, len1 = [att, att] if self.uniform_magnitude else [att[id1], att[id0]]

    np.add.at(ps.force_resultant, id0, -direction * len0)
    np.add.at(ps.force_resultant, id1, direction * len1)
def add_kdt(self, ps)
Expand source code
def add_kdt(self, ps):
    relations = ps.relations
    indexes = relations.kd_tree.query_pairs(r=self.max_distance, output_type='ndarray')
    if len(indexes) > 0:

        id0 = indexes[:, 0]
        id1 = indexes[:, 1]
        dif_v = ps.verts[id0, :] - ps.verts[id1, :]

        dist = np.linalg.norm(dif_v, axis=1)
        if self.stop_on_collide:
            collide_mask = dist > ps.mass[id0] * ps.mass[id1]
            dist_cor = np.clip(dist[collide_mask], 1e-6, 1e4)
            dist2 = np.power(dist[collide_mask], self.decay)[:, np.newaxis]
            normal_v = dif_v[collide_mask] / dist_cor[:, np.newaxis]
            id0 = indexes[collide_mask, 0]
            id1 = indexes[collide_mask, 1]
            mass_product = (ps.mass[id0] * ps.mass[id1])
        else:

            mass_product = ps.mass[id0] * ps.mass[id1]
            dist_cor = np.clip(dist, 1e-6, 1e4)
            dist2 = np.power(dist, self.decay)[:, np.newaxis]
            normal_v = dif_v / dist_cor[:, np.newaxis]

        direction = normal_v / dist2 * mass_product[:, np.newaxis]

        att = self.f_magnitude
        len0, len1 = [att, att] if self.uniform_magnitude else [att[id1], att[id0]]
        np.add.at(ps.force_resultant, id0, -direction * len0)
        np.add.at(ps.force_resultant, id1, direction * len1)
def setup(self, ps)
Expand source code
def setup(self, ps):
    ps.aware = True
    for need in self.needs:
        ps.relations.needed[need] = True
    if self.uniform_magnitude:
        self.f_magnitude = self.magnitude
    else:
        self.f_magnitude = numpy_fit_long_repeat([self.magnitude], ps.v_len)[0]
class SvAttractorsForce (location, strength, clamp, decay_power)
Expand source code
class SvAttractorsForce():
    def __init__(self, location, strength, clamp, decay_power):

        np_location = np.array(location)
        np_strength = np.array(strength)
        np_clamp = np.array(clamp)
        np_decay_pow = np.array(decay_power)
        params = numpy_match_long_repeat([np_location, np_strength, np_clamp, np_decay_pow])
        self.points = params[0]
        self.strength = params[1]
        self.use_attractors = np.any(params[1] != 0)
        self.clamp = params[2]
        self.decay = params[3]



    def setup(self, ps):
        pass


    def add(self, ps):
        if not self.use_attractors:
            return
        v_attract = ps.verts[np.newaxis, :, :] - self.points[:, np.newaxis, :]
        dist_attract = np.linalg.norm(v_attract, axis=2)
        mask = dist_attract > self.clamp[:, np.newaxis]
        mask_true = np.invert(mask)
        dist_attract2 = np.power(dist_attract, self.decay[:, np.newaxis])
        dist_attract_cor = np.clip(dist_attract2[mask_true], 1e-2, 1e4)

        v_attract *= self.strength[:, np.newaxis, np.newaxis]
        v_attract_normal = v_attract[mask_true] / dist_attract_cor[:, np.newaxis]

        v_attract[mask_true] = -v_attract_normal
        v_attract[mask, :] = 0

        r_attract = np.sum(v_attract, axis=0)
        ps.force_resultant += r_attract

Methods

def add(self, ps)
Expand source code
def add(self, ps):
    if not self.use_attractors:
        return
    v_attract = ps.verts[np.newaxis, :, :] - self.points[:, np.newaxis, :]
    dist_attract = np.linalg.norm(v_attract, axis=2)
    mask = dist_attract > self.clamp[:, np.newaxis]
    mask_true = np.invert(mask)
    dist_attract2 = np.power(dist_attract, self.decay[:, np.newaxis])
    dist_attract_cor = np.clip(dist_attract2[mask_true], 1e-2, 1e4)

    v_attract *= self.strength[:, np.newaxis, np.newaxis]
    v_attract_normal = v_attract[mask_true] / dist_attract_cor[:, np.newaxis]

    v_attract[mask_true] = -v_attract_normal
    v_attract[mask, :] = 0

    r_attract = np.sum(v_attract, axis=0)
    ps.force_resultant += r_attract
def setup(self, ps)
Expand source code
def setup(self, ps):
    pass
class SvAttractorsLineForce (location, direction, strength, clamp, decay_power)
Expand source code
class SvAttractorsLineForce():
    def __init__(self, location, direction, strength, clamp, decay_power):

        np_location = np.array(location)
        np_direction = np.array(direction)
        np_strength = np.array(strength)
        np_clamp = np.array(clamp)
        np_decay_pow = np.array(decay_power)
        params = numpy_match_long_repeat([np_location, np_direction, np_strength, np_clamp, np_decay_pow])
        self.points = params[0]
        self.direction = params[1]/np.linalg.norm(params[1], axis=1)[:, np.newaxis]
        self.strength = params[2]
        self.use_attractors = np.any(params[2] != 0)
        self.clamp = params[3]
        self.decay = params[4]



    def setup(self, ps):
        pass


    def add(self, ps):
        if not self.use_attractors:
            return
        v_attract = ps.verts[np.newaxis, :, :] - self.points[:, np.newaxis, :]
        vect_proy = np_dot(v_attract, self.direction[:, np.newaxis, :], axis=2)

        closest_point = self.points[:, np.newaxis, :] + vect_proy[:, :, np.newaxis] * self.direction[:, np.newaxis, :]

        dif_v = closest_point -  ps.verts[np.newaxis, :, :]
        dist_attract = np.linalg.norm(dif_v, axis=2)
        mask = dist_attract > self.clamp[:, np.newaxis]

        mask_true = np.invert(mask)
        dist_attract2 = np.power(dist_attract, self.decay[:, np.newaxis])
        dist_attract_cor = np.clip(dist_attract2[mask_true], 1e-2, 1e4)

        dif_v *= self.strength[:, np.newaxis, np.newaxis]
        v_attract_normal = dif_v[mask_true] / dist_attract_cor[:, np.newaxis]

        v_attract[mask_true] = v_attract_normal
        v_attract[mask, :] = 0

        r_attract = np.sum(v_attract, axis=0)
        ps.force_resultant += r_attract

Methods

def add(self, ps)
Expand source code
def add(self, ps):
    if not self.use_attractors:
        return
    v_attract = ps.verts[np.newaxis, :, :] - self.points[:, np.newaxis, :]
    vect_proy = np_dot(v_attract, self.direction[:, np.newaxis, :], axis=2)

    closest_point = self.points[:, np.newaxis, :] + vect_proy[:, :, np.newaxis] * self.direction[:, np.newaxis, :]

    dif_v = closest_point -  ps.verts[np.newaxis, :, :]
    dist_attract = np.linalg.norm(dif_v, axis=2)
    mask = dist_attract > self.clamp[:, np.newaxis]

    mask_true = np.invert(mask)
    dist_attract2 = np.power(dist_attract, self.decay[:, np.newaxis])
    dist_attract_cor = np.clip(dist_attract2[mask_true], 1e-2, 1e4)

    dif_v *= self.strength[:, np.newaxis, np.newaxis]
    v_attract_normal = dif_v[mask_true] / dist_attract_cor[:, np.newaxis]

    v_attract[mask_true] = v_attract_normal
    v_attract[mask, :] = 0

    r_attract = np.sum(v_attract, axis=0)
    ps.force_resultant += r_attract
def setup(self, ps)
Expand source code
def setup(self, ps):
    pass
class SvAttractorsPlaneForce (location, normal, strength, clamp, decay_power)
Expand source code
class SvAttractorsPlaneForce():
    def __init__(self, location, normal, strength, clamp, decay_power):

        np_location = np.array(location)
        np_normal = np.array(normal)
        np_strength = np.array(strength)
        np_clamp = np.array(clamp)
        np_decay_pow = np.array(decay_power)
        params = numpy_match_long_repeat([np_location, np_normal, np_strength, np_clamp, np_decay_pow])

        self.points = params[0]
        self.normal = params[1]/np.linalg.norm(params[1], axis=1)[:, np.newaxis]
        self.strength = params[2]
        self.use_attractors = np.any(params[2] != 0)
        self.clamp = params[3]
        self.decay = params[4]



    def setup(self, ps):
        pass


    def add(self, ps):
        if not self.use_attractors:
            return

        v_attract = ps.verts[np.newaxis, :, :] - self.points[:, np.newaxis, :]
        dist_attract = np_dot(v_attract, self.normal[:, np.newaxis, :], axis=2)

        mask = dist_attract > self.clamp[:, np.newaxis]
        mask_true = np.invert(mask)
        plane_side = dist_attract < 0
        dist_attract2 = np.power(dist_attract, self.decay[:, np.newaxis])
        dist_attract_cor = np.clip(dist_attract2, 1e-2, 1e4)
        dist_attract_cor[plane_side] *= -1

        v_attract_normal = self.normal[:, np.newaxis, :] / dist_attract_cor[:, :, np.newaxis] * self.strength[:, np.newaxis, np.newaxis]
        v_attract[mask_true] = -v_attract_normal[mask_true]
        v_attract[mask, :] = 0

        r_attract = np.sum(v_attract, axis=0)
        ps.force_resultant += r_attract

Methods

def add(self, ps)
Expand source code
def add(self, ps):
    if not self.use_attractors:
        return

    v_attract = ps.verts[np.newaxis, :, :] - self.points[:, np.newaxis, :]
    dist_attract = np_dot(v_attract, self.normal[:, np.newaxis, :], axis=2)

    mask = dist_attract > self.clamp[:, np.newaxis]
    mask_true = np.invert(mask)
    plane_side = dist_attract < 0
    dist_attract2 = np.power(dist_attract, self.decay[:, np.newaxis])
    dist_attract_cor = np.clip(dist_attract2, 1e-2, 1e4)
    dist_attract_cor[plane_side] *= -1

    v_attract_normal = self.normal[:, np.newaxis, :] / dist_attract_cor[:, :, np.newaxis] * self.strength[:, np.newaxis, np.newaxis]
    v_attract[mask_true] = -v_attract_normal[mask_true]
    v_attract[mask, :] = 0

    r_attract = np.sum(v_attract, axis=0)
    ps.force_resultant += r_attract
def setup(self, ps)
Expand source code
def setup(self, ps):
    pass
class SvBoundingBoxForce (b_box)
Expand source code
class SvBoundingBoxForce():
    def __init__(self, b_box):

        np_bbox = np.array(b_box)
        bbox_max = np.amax(np_bbox, axis=0)
        bbox_min = np.amin(np_bbox, axis=0)
        self.bbox_min = bbox_min
        self.bbox_max = bbox_max

    def setup(self, ps):
        pass

    def add(self, ps):
        min_mask = ps.verts <= self.bbox_min + ps.rads[:, np.newaxis]
        max_mask = ps.verts >= self.bbox_max - ps.rads[:, np.newaxis]
        out_vals = np.any([min_mask, max_mask], axis=0)

        ps.vel[out_vals] = 0
        ps.force_resultant[out_vals] = 0

        ps.verts = np.clip(ps.verts, self.bbox_min + ps.rads[:, np.newaxis], self.bbox_max - ps.rads[:, np.newaxis])

Methods

def add(self, ps)
Expand source code
def add(self, ps):
    min_mask = ps.verts <= self.bbox_min + ps.rads[:, np.newaxis]
    max_mask = ps.verts >= self.bbox_max - ps.rads[:, np.newaxis]
    out_vals = np.any([min_mask, max_mask], axis=0)

    ps.vel[out_vals] = 0
    ps.force_resultant[out_vals] = 0

    ps.verts = np.clip(ps.verts, self.bbox_min + ps.rads[:, np.newaxis], self.bbox_max - ps.rads[:, np.newaxis])
def setup(self, ps)
Expand source code
def setup(self, ps):
    pass
class SvBoundingMeshForce (vertices, polygons, volume=False)
Expand source code
class SvBoundingMeshForce():
    def __init__(self, vertices, polygons, volume=False):

        bvh_safe_check(vertices, polygons)
        self.bvh = BVHTree.FromPolygons(vertices, polygons, all_triangles=False, epsilon=0.0)

        if volume:
            self.add = self.add_volume
        else:
            self.add = self.add_surface

    def setup(self, ps):
        self.nearest = np.zeros(ps.verts.shape, dtype=np.float64)
        self.normals = np.zeros(ps.verts.shape, dtype=np.float64)

    def find_nearest(self, verts):
        v_nearest = self.nearest
        v_normals = self.normals
        for v, near, norm in zip(verts, v_nearest, v_normals):
            nearest, normal, _, _ = self.bvh.find_nearest(v)

            near[0] = nearest[0]
            near[1] = nearest[1]
            near[2] = nearest[2]
            norm[0] = normal[0]
            norm[1] = normal[1]
            norm[2] = normal[2]

    def add_surface(self, ps):

        self.find_nearest(ps.verts)
        ps.verts = self.nearest
        ps.vel = project_on_plane(ps.vel, self.normals)
        ps.force_resultant = project_on_plane(ps.force_resultant, self.normals)

    def add_volume(self, ps):
        self.find_nearest(ps.verts)
        outer_mask = np_dot(self.nearest - ps.verts, self.normals) <= 0
        ps.verts[outer_mask] = self.nearest[outer_mask]

        ps.vel[outer_mask] = project_on_plane(ps.vel[outer_mask], self.normals[outer_mask])
        ps.force_resultant[outer_mask] = project_on_plane(ps.force_resultant[outer_mask], self.normals[outer_mask])

Methods

def add_surface(self, ps)
Expand source code
def add_surface(self, ps):

    self.find_nearest(ps.verts)
    ps.verts = self.nearest
    ps.vel = project_on_plane(ps.vel, self.normals)
    ps.force_resultant = project_on_plane(ps.force_resultant, self.normals)
def add_volume(self, ps)
Expand source code
def add_volume(self, ps):
    self.find_nearest(ps.verts)
    outer_mask = np_dot(self.nearest - ps.verts, self.normals) <= 0
    ps.verts[outer_mask] = self.nearest[outer_mask]

    ps.vel[outer_mask] = project_on_plane(ps.vel[outer_mask], self.normals[outer_mask])
    ps.force_resultant[outer_mask] = project_on_plane(ps.force_resultant[outer_mask], self.normals[outer_mask])
def find_nearest(self, verts)
Expand source code
def find_nearest(self, verts):
    v_nearest = self.nearest
    v_normals = self.normals
    for v, near, norm in zip(verts, v_nearest, v_normals):
        nearest, normal, _, _ = self.bvh.find_nearest(v)

        near[0] = nearest[0]
        near[1] = nearest[1]
        near[2] = nearest[2]
        norm[0] = normal[0]
        norm[1] = normal[1]
        norm[2] = normal[2]
def setup(self, ps)
Expand source code
def setup(self, ps):
    self.nearest = np.zeros(ps.verts.shape, dtype=np.float64)
    self.normals = np.zeros(ps.verts.shape, dtype=np.float64)
class SvBoundingPlaneSurfaceForce (center, normal)
Expand source code
class SvBoundingPlaneSurfaceForce():
    def __init__(self, center, normal):


        self.center = np.array(center[0])
        self.normal = np.array(normal[0])
        self.normal = self.normal/np.linalg.norm(self.normal)


    def setup(self, ps):
        pass


    def add(self, ps):

        vs = ps.verts - self.center
        distance = np.sum(vs * self.normal, axis=1)
        ps.verts = ps.verts - self.normal[np.newaxis, :] * distance[:, np.newaxis]

        ps.vel = project_on_plane(ps.vel, self.normal)
        ps.force_resultant = project_on_plane(ps.force_resultant, self.normal)

Methods

def add(self, ps)
Expand source code
def add(self, ps):

    vs = ps.verts - self.center
    distance = np.sum(vs * self.normal, axis=1)
    ps.verts = ps.verts - self.normal[np.newaxis, :] * distance[:, np.newaxis]

    ps.vel = project_on_plane(ps.vel, self.normal)
    ps.force_resultant = project_on_plane(ps.force_resultant, self.normal)
def setup(self, ps)
Expand source code
def setup(self, ps):
    pass
class SvBoundingSolidForce (solid, volume=False)
Expand source code
class SvBoundingSolidForce():
    def __init__(self, solid, volume=False):

        if isinstance(solid, Part.Solid):
            self.shape = solid.OuterShell
        elif is_solid_face_surface(solid):
            self.shape = solid.face
        else:
            self.shape = solid

        if volume:
            self.add = self.add_volume
        else:
            self.add = self.add_surface

    def find_closest(self,v):
        vertex = Part.Vertex(Base.Vector(v))

        dist = self.shape.distToShape(vertex)
        if str(dist[2][0][0]) == "b'Face'":
            normal = self.shape.Faces[dist[2][0][1]].normalAt(*dist[2][0][2])
        elif str(dist[2][0][0]) == "b'Edge'":
            edge = self.shape.Edges[dist[2][0][1]]
            vector = self.shape.Edges[dist[2][0][1]].valueAt(dist[2][0][2])
            face_list = self.shape.ancestorsOfType(edge, Part.Face)
            normal = [0,0,0]
            count = 0
            for face in face_list:
                for edge1 in face.Edges:

                    if edge1.isSame(edge):
                        param = face.Surface.parameter(vector)
                        normal_ed = face.normalAt(*param)
                        normal[0] += normal_ed[0]
                        normal[1] += normal_ed[1]
                        normal[2] += normal_ed[2]
                        count+=1
                        break
            if count > 0:
                normal[0] /= count
                normal[1] /= count
                normal[2] /= count
            else:
                normal = [0, 0, 1]
        else:
            vertex = self.shape.Vertexes[dist[2][0][1]]
            face_list = self.shape.ancestorsOfType(vertex, Part.Face)
            normal = [0, 0, 0]
            count = 0
            for face in face_list:
                for vertex1 in face.Vertexes:

                    if vertex1.isSame(vertex):
                        param = face.Surface.parameter(vertex.Point)
                        normal_ed = face.normalAt(*param)
                        normal[0] += normal_ed[0]
                        normal[1] += normal_ed[1]
                        normal[2] += normal_ed[2]
                        count+=1
                        break
            if count > 0:
                normal[0] /= count
                normal[1] /= count
                normal[2] /= count
            else:
                normal = [0, 0, 1]
        return dist[1][0][0], normal

    def find(self, verts):
        v_nearest = self.nearest
        v_normals = self.normals
        for v, near, norm in zip(verts, v_nearest, v_normals):
            nearest, normal = self.find_closest(v)
            near[0] = nearest[0]
            near[1] = nearest[1]
            near[2] = nearest[2]
            norm[0] = normal[0]
            norm[1] = normal[1]
            norm[2] = normal[2]

    def find_masked(self, verts, mask):
        v_nearest = self.nearest
        v_normals = self.normals
        for v, near, norm in zip(verts[mask], v_nearest[mask], v_normals[mask]):
            nearest, normal = self.find_closest(v)
            near[0] = nearest[0]
            near[1] = nearest[1]
            near[2] = nearest[2]
            norm[0] = normal[0]
            norm[1] = normal[1]
            norm[2] = normal[2]

    def is_outside(self, verts):

        return np.array([not self.shape.isInside(Base.Vector(v), 1e-6, False) for v in verts], dtype=np.bool_)
    def setup(self, ps):
        self.nearest = np.zeros(ps.verts.shape, dtype=np.float64)
        self.normals = np.zeros(ps.verts.shape, dtype=np.float64)


    def add_surface(self, ps):
        self.find(ps.verts)
        ps.verts = self.nearest
        ps.vel = project_on_plane(ps.vel, self.normals)
        ps.force_resultant = project_on_plane(ps.force_resultant, self.normals)

    def add_volume(self, ps):
        outside = self.is_outside(ps.verts)
        self.find_masked(ps.verts, outside)
        ps.verts[outside] =  self.nearest[outside]
        ps.vel[outside] = project_on_plane(ps.vel[outside], self.normals[outside])
        ps.force_resultant[outside] = project_on_plane(ps.force_resultant[outside], self.normals[outside])

Methods

def add_surface(self, ps)
Expand source code
def add_surface(self, ps):
    self.find(ps.verts)
    ps.verts = self.nearest
    ps.vel = project_on_plane(ps.vel, self.normals)
    ps.force_resultant = project_on_plane(ps.force_resultant, self.normals)
def add_volume(self, ps)
Expand source code
def add_volume(self, ps):
    outside = self.is_outside(ps.verts)
    self.find_masked(ps.verts, outside)
    ps.verts[outside] =  self.nearest[outside]
    ps.vel[outside] = project_on_plane(ps.vel[outside], self.normals[outside])
    ps.force_resultant[outside] = project_on_plane(ps.force_resultant[outside], self.normals[outside])
def find(self, verts)
Expand source code
def find(self, verts):
    v_nearest = self.nearest
    v_normals = self.normals
    for v, near, norm in zip(verts, v_nearest, v_normals):
        nearest, normal = self.find_closest(v)
        near[0] = nearest[0]
        near[1] = nearest[1]
        near[2] = nearest[2]
        norm[0] = normal[0]
        norm[1] = normal[1]
        norm[2] = normal[2]
def find_closest(self, v)
Expand source code
def find_closest(self,v):
    vertex = Part.Vertex(Base.Vector(v))

    dist = self.shape.distToShape(vertex)
    if str(dist[2][0][0]) == "b'Face'":
        normal = self.shape.Faces[dist[2][0][1]].normalAt(*dist[2][0][2])
    elif str(dist[2][0][0]) == "b'Edge'":
        edge = self.shape.Edges[dist[2][0][1]]
        vector = self.shape.Edges[dist[2][0][1]].valueAt(dist[2][0][2])
        face_list = self.shape.ancestorsOfType(edge, Part.Face)
        normal = [0,0,0]
        count = 0
        for face in face_list:
            for edge1 in face.Edges:

                if edge1.isSame(edge):
                    param = face.Surface.parameter(vector)
                    normal_ed = face.normalAt(*param)
                    normal[0] += normal_ed[0]
                    normal[1] += normal_ed[1]
                    normal[2] += normal_ed[2]
                    count+=1
                    break
        if count > 0:
            normal[0] /= count
            normal[1] /= count
            normal[2] /= count
        else:
            normal = [0, 0, 1]
    else:
        vertex = self.shape.Vertexes[dist[2][0][1]]
        face_list = self.shape.ancestorsOfType(vertex, Part.Face)
        normal = [0, 0, 0]
        count = 0
        for face in face_list:
            for vertex1 in face.Vertexes:

                if vertex1.isSame(vertex):
                    param = face.Surface.parameter(vertex.Point)
                    normal_ed = face.normalAt(*param)
                    normal[0] += normal_ed[0]
                    normal[1] += normal_ed[1]
                    normal[2] += normal_ed[2]
                    count+=1
                    break
        if count > 0:
            normal[0] /= count
            normal[1] /= count
            normal[2] /= count
        else:
            normal = [0, 0, 1]
    return dist[1][0][0], normal
def find_masked(self, verts, mask)
Expand source code
def find_masked(self, verts, mask):
    v_nearest = self.nearest
    v_normals = self.normals
    for v, near, norm in zip(verts[mask], v_nearest[mask], v_normals[mask]):
        nearest, normal = self.find_closest(v)
        near[0] = nearest[0]
        near[1] = nearest[1]
        near[2] = nearest[2]
        norm[0] = normal[0]
        norm[1] = normal[1]
        norm[2] = normal[2]
def is_outside(self, verts)
Expand source code
def is_outside(self, verts):

    return np.array([not self.shape.isInside(Base.Vector(v), 1e-6, False) for v in verts], dtype=np.bool_)
def setup(self, ps)
Expand source code
def setup(self, ps):
    self.nearest = np.zeros(ps.verts.shape, dtype=np.float64)
    self.normals = np.zeros(ps.verts.shape, dtype=np.float64)
class SvBoundingSphereForce (center, radius)
Expand source code
class SvBoundingSphereForce():
    def __init__(self, center, radius):


        self.center = center[0]
        self.radius = radius[0]



    def setup(self, ps):
        pass


    def add(self, ps):
        vs = ps.verts - self.center
        dist = np.linalg.norm(vs, axis=1)
        mask = dist + ps.rads > self.radius
        vs_normal = vs[mask]/dist[mask, np.newaxis]
        ps.verts[mask] = vs_normal*(self.radius - ps.rads[mask])[:,np.newaxis]

        ps.vel[mask] = project_on_plane(ps.vel[mask], vs_normal)
        ps.force_resultant[mask] = project_on_plane(ps.force_resultant[mask], vs_normal)

Methods

def add(self, ps)
Expand source code
def add(self, ps):
    vs = ps.verts - self.center
    dist = np.linalg.norm(vs, axis=1)
    mask = dist + ps.rads > self.radius
    vs_normal = vs[mask]/dist[mask, np.newaxis]
    ps.verts[mask] = vs_normal*(self.radius - ps.rads[mask])[:,np.newaxis]

    ps.vel[mask] = project_on_plane(ps.vel[mask], vs_normal)
    ps.force_resultant[mask] = project_on_plane(ps.force_resultant[mask], vs_normal)
def setup(self, ps)
Expand source code
def setup(self, ps):
    pass
class SvBoundingSphereSurfaceForce (center, radius)
Expand source code
class SvBoundingSphereSurfaceForce():
    def __init__(self, center, radius):


        self.center = center[0]
        self.radius = radius[0]



    def setup(self, ps):
        pass


    def add(self, ps):
        vs = ps.verts - self.center
        dist = np.linalg.norm(vs, axis=1)
        mask = dist == 0
        vs[mask]=ps.verts[mask]+[[1,0,0]]
        dist[mask] = 1
        vs_normal = vs/dist[:, np.newaxis]
        ps.verts = vs_normal * self.radius

        ps.vel = project_on_plane(ps.vel, vs_normal)
        ps.force_resultant = project_on_plane(ps.force_resultant, vs_normal)

Methods

def add(self, ps)
Expand source code
def add(self, ps):
    vs = ps.verts - self.center
    dist = np.linalg.norm(vs, axis=1)
    mask = dist == 0
    vs[mask]=ps.verts[mask]+[[1,0,0]]
    dist[mask] = 1
    vs_normal = vs/dist[:, np.newaxis]
    ps.verts = vs_normal * self.radius

    ps.vel = project_on_plane(ps.vel, vs_normal)
    ps.force_resultant = project_on_plane(ps.force_resultant, vs_normal)
def setup(self, ps)
Expand source code
def setup(self, ps):
    pass
class SvCollisionForce (magnitude, use_kdtree=False)
Expand source code
class SvCollisionForce():
    def __init__(self, magnitude, use_kdtree=False):

        self.magnitude = np.array(magnitude)
        self.uniform_magnitude = len(magnitude) < 2
        self.needs = ['dif_v', 'dist', 'dist_cor', 'collide', 'normal_v']
        self.use_kdtree = use_kdtree
        if self.use_kdtree:
            self.needs = ['kd_tree', 'max_radius', 'kd_collisions']
            self.add = self.add_kdt
        else:
            self.needs = ['indexes', 'sum_rad', 'dif_v', 'dist', 'dist_cor', 'collide', 'normal_v']
            self.add = self.add_brute_force


    def setup(self, ps):
        ps.aware = True
        for need in self.needs:
            ps.relations.needed[need] = True
        if self.uniform_magnitude:
            self.f_magnitude = self.magnitude
        else:
            self.f_magnitude = numpy_fit_long_repeat([self.magnitude], ps.v_len)[0]

    def add_brute_force(self, ps):

        id0 = ps.relations.index_inter[:, 0]
        id1 = ps.relations.index_inter[:, 1]

        le = ps.relations.dist[ps.relations.mask, np.newaxis] - ps.relations.sum_rad[ps.relations.mask, np.newaxis]
        no = ps.relations.normal_v[ps.relations.mask]
        sf = self.f_magnitude[:, np.newaxis]
        len0, len1 = [sf, sf] if self.uniform_magnitude else [sf[id1], sf[id0]]

        np.add.at(ps.force_resultant, id0, -no * le * len0)
        np.add.at(ps.force_resultant, id1, no * le * len1)

    def add_kdt(self, ps):
        relations = ps.relations
        if len(relations.kd_indexes) > 0:

            id0 = relations.kd_indexes[:, 0]
            id1 = relations.kd_indexes[:, 1]
            sum_rad = relations.kd_sum_rad
            dif_v = relations.kd_dif_v
            dist = relations.kd_dist
            mask = relations.kd_mask
            dist_cor = np.clip(dist[mask], 1e-6, 1e4)

            normal_v = dif_v[mask] / dist_cor[:, np.newaxis]



            le = (dist[mask] - sum_rad[mask])[:, np.newaxis]

            variable_coll = len(self.f_magnitude) > 1
            sf = self.f_magnitude[:, np.newaxis]
            len0, len1 = [sf[id1[mask]], sf[id0[mask]]] if variable_coll else [sf, sf]


            np.add.at(ps.force_resultant, id0[mask], -normal_v * le * len0)
            np.add.at(ps.force_resultant, id1[mask], normal_v * le * len1)

Methods

def add_brute_force(self, ps)
Expand source code
def add_brute_force(self, ps):

    id0 = ps.relations.index_inter[:, 0]
    id1 = ps.relations.index_inter[:, 1]

    le = ps.relations.dist[ps.relations.mask, np.newaxis] - ps.relations.sum_rad[ps.relations.mask, np.newaxis]
    no = ps.relations.normal_v[ps.relations.mask]
    sf = self.f_magnitude[:, np.newaxis]
    len0, len1 = [sf, sf] if self.uniform_magnitude else [sf[id1], sf[id0]]

    np.add.at(ps.force_resultant, id0, -no * le * len0)
    np.add.at(ps.force_resultant, id1, no * le * len1)
def add_kdt(self, ps)
Expand source code
def add_kdt(self, ps):
    relations = ps.relations
    if len(relations.kd_indexes) > 0:

        id0 = relations.kd_indexes[:, 0]
        id1 = relations.kd_indexes[:, 1]
        sum_rad = relations.kd_sum_rad
        dif_v = relations.kd_dif_v
        dist = relations.kd_dist
        mask = relations.kd_mask
        dist_cor = np.clip(dist[mask], 1e-6, 1e4)

        normal_v = dif_v[mask] / dist_cor[:, np.newaxis]



        le = (dist[mask] - sum_rad[mask])[:, np.newaxis]

        variable_coll = len(self.f_magnitude) > 1
        sf = self.f_magnitude[:, np.newaxis]
        len0, len1 = [sf[id1[mask]], sf[id0[mask]]] if variable_coll else [sf, sf]


        np.add.at(ps.force_resultant, id0[mask], -normal_v * le * len0)
        np.add.at(ps.force_resultant, id1[mask], normal_v * le * len1)
def setup(self, ps)
Expand source code
def setup(self, ps):
    ps.aware = True
    for need in self.needs:
        ps.relations.needed[need] = True
    if self.uniform_magnitude:
        self.f_magnitude = self.magnitude
    else:
        self.f_magnitude = numpy_fit_long_repeat([self.magnitude], ps.v_len)[0]
class SvDragForce (drag_force, exponent)
Expand source code
class SvDragForce():

    def __init__(self, drag_force, exponent):

        self.magnitude = np.array(drag_force)
        self.surf = 0
        self.exponent = exponent
        self.add = self.add_size_change


    def setup(self, ps):
        size_change = ps.size_change
        if len(self.magnitude) < 2:
            self.ap_magnitude = self.magnitude
        else:
            self.ap_magnitude = numpy_fit_long_repeat([self.magnitude], ps.v_len)[0]
        if len(self.exponent) < 2:
            self.ap_exponent = self.exponent
        else:
            self.ap_exponent = numpy_fit_long_repeat([self.exponent], ps.v_len)[0]

        self.surf = np.power(ps.rads, 2)
        if not size_change:
            self.constant = (self.ap_magnitude * self.surf)[:, np.newaxis]

            self.add = self.add_constant_size
        else:
            self.add = self.add_size_change
            self.ap_magnitude = self.magnitude[:, np.newaxis]

    def add_size_change(self, ps):
        vel_mag = np.linalg.norm(ps.vel, axis=1)
        vel_mag_zero = vel_mag == 0
        vel_mag[vel_mag_zero] = 1
        vel_mag2 = np.power(vel_mag, self.ap_exponent)
        vel_norm = ps.vel/vel_mag[:, np.newaxis]
        self.surf = np.power(ps.rads, 2)
        drag = -vel_norm * self.ap_magnitude * vel_mag2[:, np.newaxis] * self.surf[:, np.newaxis]

        ps.force_resultant += drag

    def add_constant_size(self, ps):

        vel_mag = np.linalg.norm(ps.vel, axis=1)
        vel_mag_zero = vel_mag == 0
        vel_mag[vel_mag_zero] = 1

        vel_mag2 = np.power(vel_mag, self.ap_exponent)
        vel_norm = ps.vel/vel_mag[:, np.newaxis]

        drag = -vel_norm * vel_mag2[:, np.newaxis] *  self.constant

        ps.force_resultant += drag

Methods

def add_constant_size(self, ps)
Expand source code
def add_constant_size(self, ps):

    vel_mag = np.linalg.norm(ps.vel, axis=1)
    vel_mag_zero = vel_mag == 0
    vel_mag[vel_mag_zero] = 1

    vel_mag2 = np.power(vel_mag, self.ap_exponent)
    vel_norm = ps.vel/vel_mag[:, np.newaxis]

    drag = -vel_norm * vel_mag2[:, np.newaxis] *  self.constant

    ps.force_resultant += drag
def add_size_change(self, ps)
Expand source code
def add_size_change(self, ps):
    vel_mag = np.linalg.norm(ps.vel, axis=1)
    vel_mag_zero = vel_mag == 0
    vel_mag[vel_mag_zero] = 1
    vel_mag2 = np.power(vel_mag, self.ap_exponent)
    vel_norm = ps.vel/vel_mag[:, np.newaxis]
    self.surf = np.power(ps.rads, 2)
    drag = -vel_norm * self.ap_magnitude * vel_mag2[:, np.newaxis] * self.surf[:, np.newaxis]

    ps.force_resultant += drag
def setup(self, ps)
Expand source code
def setup(self, ps):
    size_change = ps.size_change
    if len(self.magnitude) < 2:
        self.ap_magnitude = self.magnitude
    else:
        self.ap_magnitude = numpy_fit_long_repeat([self.magnitude], ps.v_len)[0]
    if len(self.exponent) < 2:
        self.ap_exponent = self.exponent
    else:
        self.ap_exponent = numpy_fit_long_repeat([self.exponent], ps.v_len)[0]

    self.surf = np.power(ps.rads, 2)
    if not size_change:
        self.constant = (self.ap_magnitude * self.surf)[:, np.newaxis]

        self.add = self.add_constant_size
    else:
        self.add = self.add_size_change
        self.ap_magnitude = self.magnitude[:, np.newaxis]
class SvEdgesAngleForce (springs, spring_k, fixed_angle, use_fix_angle)
Expand source code
class SvEdgesAngleForce():
    def __init__(self, springs, spring_k, fixed_angle, use_fix_angle):
        self.springs = np.array(springs)
        self.spring_k = np.array(spring_k)
        self.use_fix_angle = use_fix_angle
        self.fixed_angle = fixed_angle
        self.rest_ang = fixed_angle

    def setup(self, ps):
        rel=[[] for i in range(ps.v_len)]
        for (e0, e1) in self.springs:
            rel[e0].append(e1)
            rel[e1].append(e0)
        target_v = []
        rest_ang = []
        rel_idx = []

        if self.use_fix_angle or self.fixed_angle[0] > 0:
            self.rest_ang = self.fixed_angle
            for v,r, idx in zip(ps.verts, rel, range(ps.v_len)):
                if len(r) == 2:
                    target_v.append(idx)
                    rel_idx.append(r)
                elif len(r)>2:
                    for idx0, idx1 in zip(r,r[1:]+[r[0]]):
                        target_v.append(idx)
                        rel_idx.append([idx0, idx1])

            self.target_v = np.array(target_v)
            self.rest_ang = self.fixed_angle
            self.rel_idx = np.array(rel_idx)
        else:

            for v,r, idx in zip(ps.verts, rel, range(ps.v_len)):
                if len(r) == 2:
                    vec = ps.verts[r[0]] - v
                    vec2 = ps.verts[r[1]] - v
                    rest_ang.append(angle_between([vec], [vec2])[0])
                    target_v.append(idx)
                    rel_idx.append(r)
                elif len(r)>2:
                    for idx0, idx1 in zip(r,r[1:]+[r[0]]):
                        vec = ps.verts[idx0] - v
                        vec2 = ps.verts[idx1] - v
                        rest_ang.append(angle_between([vec], [vec2])[0])
                        target_v.append(idx)
                        rel_idx.append([idx0, idx1])
            self.target_v = np.array(target_v)
            self.rest_ang = np.array(rest_ang)
            self.rel_idx = np.array(rel_idx)


    def add(self, ps):


        vs = ps.verts[self.target_v, :]
        v1_u = unit_vector(ps.verts[self.rel_idx[:,0]] - vs)
        v2_u = unit_vector(ps.verts[self.rel_idx[:,1]] - vs)
        act_ang = np.arccos(np.clip(np_dot(v1_u, v2_u), -1.0, 1.0))


        average_vector = (v1_u + v2_u)/2
        f = average_vector * ((self.rest_ang - act_ang)*self.spring_k)[:, np.newaxis]
        np.add.at(ps.force_resultant, self.target_v, f)

Methods

def add(self, ps)
Expand source code
def add(self, ps):


    vs = ps.verts[self.target_v, :]
    v1_u = unit_vector(ps.verts[self.rel_idx[:,0]] - vs)
    v2_u = unit_vector(ps.verts[self.rel_idx[:,1]] - vs)
    act_ang = np.arccos(np.clip(np_dot(v1_u, v2_u), -1.0, 1.0))


    average_vector = (v1_u + v2_u)/2
    f = average_vector * ((self.rest_ang - act_ang)*self.spring_k)[:, np.newaxis]
    np.add.at(ps.force_resultant, self.target_v, f)
def setup(self, ps)
Expand source code
def setup(self, ps):
    rel=[[] for i in range(ps.v_len)]
    for (e0, e1) in self.springs:
        rel[e0].append(e1)
        rel[e1].append(e0)
    target_v = []
    rest_ang = []
    rel_idx = []

    if self.use_fix_angle or self.fixed_angle[0] > 0:
        self.rest_ang = self.fixed_angle
        for v,r, idx in zip(ps.verts, rel, range(ps.v_len)):
            if len(r) == 2:
                target_v.append(idx)
                rel_idx.append(r)
            elif len(r)>2:
                for idx0, idx1 in zip(r,r[1:]+[r[0]]):
                    target_v.append(idx)
                    rel_idx.append([idx0, idx1])

        self.target_v = np.array(target_v)
        self.rest_ang = self.fixed_angle
        self.rel_idx = np.array(rel_idx)
    else:

        for v,r, idx in zip(ps.verts, rel, range(ps.v_len)):
            if len(r) == 2:
                vec = ps.verts[r[0]] - v
                vec2 = ps.verts[r[1]] - v
                rest_ang.append(angle_between([vec], [vec2])[0])
                target_v.append(idx)
                rel_idx.append(r)
            elif len(r)>2:
                for idx0, idx1 in zip(r,r[1:]+[r[0]]):
                    vec = ps.verts[idx0] - v
                    vec2 = ps.verts[idx1] - v
                    rest_ang.append(angle_between([vec], [vec2])[0])
                    target_v.append(idx)
                    rel_idx.append([idx0, idx1])
        self.target_v = np.array(target_v)
        self.rest_ang = np.array(rest_ang)
        self.rel_idx = np.array(rel_idx)
class SvFieldForce (field, strength, mass_proportional)
Expand source code
class SvFieldForce():
    def __init__(self, field, strength, mass_proportional):

        self.field = field
        self.func = self.apply_mass_proportional
        self.mass_proportional = mass_proportional
        self.strength = np.array(strength)
        if self.mass_proportional:
            self.add_func = self.apply_dependant
        else:
            self.add_func = self.apply_mass_proportional


    def setup(self, ps):
        pass


    def apply_mass_proportional(self, ps):
        '''apply constant forces'''
        if not np.any(self.strength != 0):
            return
        xs = ps.verts[:, 0]
        ys = ps.verts[:, 1]
        zs = ps.verts[:, 2]
        rx, ry, rz = self.field.evaluate_grid(xs, ys, zs)
        ps.force_resultant[:, 0] += rx * ps.mass * self.strength
        ps.force_resultant[:, 1] += ry * ps.mass * self.strength
        ps.force_resultant[:, 2] += rz * ps.mass * self.strength

    def apply_dependant(self, ps):
        '''apply constant forces'''
        if not np.any(self.strength != 0):
            return
        xs = ps.verts[:, 0]
        ys = ps.verts[:, 1]
        zs = ps.verts[:, 2]
        rx, ry, rz = self.field.evaluate_grid(xs, ys, zs)
        ps.force_resultant[:, 0] += rx * self.strength
        ps.force_resultant[:, 1] += ry * self.strength
        ps.force_resultant[:, 2] += rz * self.strength

    def add(self, ps):
        self.add_func(ps)

Methods

def add(self, ps)
Expand source code
def add(self, ps):
    self.add_func(ps)
def apply_dependant(self, ps)

apply constant forces

Expand source code
def apply_dependant(self, ps):
    '''apply constant forces'''
    if not np.any(self.strength != 0):
        return
    xs = ps.verts[:, 0]
    ys = ps.verts[:, 1]
    zs = ps.verts[:, 2]
    rx, ry, rz = self.field.evaluate_grid(xs, ys, zs)
    ps.force_resultant[:, 0] += rx * self.strength
    ps.force_resultant[:, 1] += ry * self.strength
    ps.force_resultant[:, 2] += rz * self.strength
def apply_mass_proportional(self, ps)

apply constant forces

Expand source code
def apply_mass_proportional(self, ps):
    '''apply constant forces'''
    if not np.any(self.strength != 0):
        return
    xs = ps.verts[:, 0]
    ys = ps.verts[:, 1]
    zs = ps.verts[:, 2]
    rx, ry, rz = self.field.evaluate_grid(xs, ys, zs)
    ps.force_resultant[:, 0] += rx * ps.mass * self.strength
    ps.force_resultant[:, 1] += ry * ps.mass * self.strength
    ps.force_resultant[:, 2] += rz * ps.mass * self.strength
def setup(self, ps)
Expand source code
def setup(self, ps):
    pass
class SvFitForce (magnitude, min_radius, max_radius, mode, use_kdtree=False)
Expand source code
class SvFitForce():
    def __init__(self, magnitude, min_radius, max_radius, mode, use_kdtree=False):

        self.magnitude = np.array(magnitude)
        self.uniform_magnitude = len(magnitude) < 2
        self.min_radius = np.array(min_radius)
        self.max_radius = np.array(max_radius)
        if mode == 'Absolute':
            self.absolute = True
        else:
            self.absolute = False
            if mode == 'Percent':
                self.magnitude /= 100

        self.size_changer = True
        self.use_kdtree = use_kdtree
        if self.use_kdtree:
            self.needs = ['kd_tree', 'max_radius', 'kd_collisions']
            self.add = self.add_kdt
        else:
            self.needs = ['indexes', 'sum_rad', 'dif_v', 'dist', 'collide']
            self.add = self.add_brute_force

    def setup(self, ps):
        ps.aware = True
        self.all_range = np.arange(ps.v_len, dtype=np.int16)

        for need in self.needs:
            ps.relations.needed[need] = True
        if self.uniform_magnitude:
            self.f_magnitude = self.magnitude
        else:
            self.f_magnitude = numpy_fit_long_repeat([self.magnitude], ps.v_len)[0]

    def add_brute_force(self, ps):
        rel = ps.relations
        touch = np.unique(rel.index_inter)
        free = np.setdiff1d(self.all_range, touch)
        u_grow = self.uniform_magnitude
        grow_un, grow_tou = [self.f_magnitude, self.f_magnitude] if u_grow else [self.f_magnitude[free], self.f_magnitude[touch]]
        if self.absolute:
            ps.rads[free] += grow_un
            ps.rads[touch] -= grow_tou
        else:
            ps.rads[free] += grow_un * ps.rads[free]
            ps.rads[touch] -= grow_tou * ps.rads[touch]
        ps.rads = np.clip(ps.rads, self.min_radius, self.max_radius)

    def add_kdt(self, ps):
        relations = ps.relations
        if len(relations.kd_indexes) > 0:
            touch = np.unique(relations.kd_indexes[ps.relations.kd_mask])
            free = np.setdiff1d(self.all_range, touch)
            u_grow = self.uniform_magnitude
            grow_un, grow_tou = [self.f_magnitude, self.f_magnitude] if u_grow else [self.f_magnitude[free], self.f_magnitude[touch]]
            if self.absolute:
                ps.rads[free] += grow_un
                ps.rads[touch] -= grow_tou
            else:
                ps.rads[free] += grow_un * ps.rads[free]
                ps.rads[touch] -= grow_tou * ps.rads[touch]
            ps.rads = np.clip(ps.rads, self.min_radius, self.max_radius)
        else:
            if self.absolute:
                ps.rads += self.f_magnitude

            else:
                ps.rads += self.f_magnitude * ps.rads

            ps.rads = np.clip(ps.rads, self.min_radius, self.max_radius)

Methods

def add_brute_force(self, ps)
Expand source code
def add_brute_force(self, ps):
    rel = ps.relations
    touch = np.unique(rel.index_inter)
    free = np.setdiff1d(self.all_range, touch)
    u_grow = self.uniform_magnitude
    grow_un, grow_tou = [self.f_magnitude, self.f_magnitude] if u_grow else [self.f_magnitude[free], self.f_magnitude[touch]]
    if self.absolute:
        ps.rads[free] += grow_un
        ps.rads[touch] -= grow_tou
    else:
        ps.rads[free] += grow_un * ps.rads[free]
        ps.rads[touch] -= grow_tou * ps.rads[touch]
    ps.rads = np.clip(ps.rads, self.min_radius, self.max_radius)
def add_kdt(self, ps)
Expand source code
def add_kdt(self, ps):
    relations = ps.relations
    if len(relations.kd_indexes) > 0:
        touch = np.unique(relations.kd_indexes[ps.relations.kd_mask])
        free = np.setdiff1d(self.all_range, touch)
        u_grow = self.uniform_magnitude
        grow_un, grow_tou = [self.f_magnitude, self.f_magnitude] if u_grow else [self.f_magnitude[free], self.f_magnitude[touch]]
        if self.absolute:
            ps.rads[free] += grow_un
            ps.rads[touch] -= grow_tou
        else:
            ps.rads[free] += grow_un * ps.rads[free]
            ps.rads[touch] -= grow_tou * ps.rads[touch]
        ps.rads = np.clip(ps.rads, self.min_radius, self.max_radius)
    else:
        if self.absolute:
            ps.rads += self.f_magnitude

        else:
            ps.rads += self.f_magnitude * ps.rads

        ps.rads = np.clip(ps.rads, self.min_radius, self.max_radius)
def setup(self, ps)
Expand source code
def setup(self, ps):
    ps.aware = True
    self.all_range = np.arange(ps.v_len, dtype=np.int16)

    for need in self.needs:
        ps.relations.needed[need] = True
    if self.uniform_magnitude:
        self.f_magnitude = self.magnitude
    else:
        self.f_magnitude = numpy_fit_long_repeat([self.magnitude], ps.v_len)[0]
class SvInflateForce (pols, inflate)
Expand source code
class SvInflateForce():
    def __init__(self, pols, inflate):

        np_pols = np.array(pols)
        p_len = len(pols)
        if np_pols.dtype == np.object:
            np_len = np.vectorize(len)
            pols_sides = np_len(np_pols)
            pol_side_max = np.amax(pols_sides)
            np_pols = expand_pols_numpy(np_pols, pol_side_max)
            p_regular = False
        else:
            p_regular = True
            pols_sides = np.array(p_len)
            pol_side_max = len(pols[0])

        self.pols = np_pols
        self.pols_side_max = pol_side_max
        self.pols_sides = pols_sides
        self.inflate = inflate
        self.p_regular = p_regular


    def setup(self, ps):
        pass


    def add(self, ps):

        np_pols = self.pols
        pol_side_max = self.pols_side_max
        pols_sides = self.pols_sides
        inflate = self.inflate
        p_regular = self.p_regular

        pol_v = ps.verts[np_pols, :]
        pols_normal = pols_normals(pol_v, inflate)

        if p_regular:
            p_area = calc_area(pol_side_max, pol_v, pols_normal)[:, np.newaxis]
            for i in range(pol_side_max):
                np.add.at(ps.force_resultant, np_pols[:, i], pols_normal * p_area)

        else:
            p_area = calc_area_var_sides(pol_side_max, pols_sides, pol_v, pols_normal)[:, np.newaxis]
            for i in range(pol_side_max):
                mask = pols_sides > i
                np.add.at(ps.force_resultant, np_pols[mask, i], pols_normal[mask] * p_area[mask])

Methods

def add(self, ps)
Expand source code
def add(self, ps):

    np_pols = self.pols
    pol_side_max = self.pols_side_max
    pols_sides = self.pols_sides
    inflate = self.inflate
    p_regular = self.p_regular

    pol_v = ps.verts[np_pols, :]
    pols_normal = pols_normals(pol_v, inflate)

    if p_regular:
        p_area = calc_area(pol_side_max, pol_v, pols_normal)[:, np.newaxis]
        for i in range(pol_side_max):
            np.add.at(ps.force_resultant, np_pols[:, i], pols_normal * p_area)

    else:
        p_area = calc_area_var_sides(pol_side_max, pols_sides, pol_v, pols_normal)[:, np.newaxis]
        for i in range(pol_side_max):
            mask = pols_sides > i
            np.add.at(ps.force_resultant, np_pols[mask, i], pols_normal[mask] * p_area[mask])
def setup(self, ps)
Expand source code
def setup(self, ps):
    pass
class SvObstaclesBVHForce (verts, pols, absorption)
Expand source code
class SvObstaclesBVHForce():
    def __init__(self, verts, pols, absorption):


        bvh_safe_check(verts, pols)
        self.bvh = BVHTree.FromPolygons(verts, pols, all_triangles=False, epsilon=0.0)
        self.absorption = 1 - max(min(absorption[0],1),0)

    def setup(self, ps):
        self.nearest = np.zeros(ps.verts.shape, dtype=np.float64)
        self.normals = np.zeros(ps.verts.shape, dtype=np.float64)
        self.distance = np.zeros(len(ps.verts), dtype=np.float64)

    def find_nearest(self, verts):
        v_nearest = self.nearest
        v_normals = self.normals
        v_dist = self.distance
        for v, near, norm, idx in zip(verts, v_nearest, v_normals, range(len(verts))):
            nearest, normal, _, distance = self.bvh.find_nearest(v)

            near[0] = nearest[0]
            near[1] = nearest[1]
            near[2] = nearest[2]
            norm[0] = normal[0]
            norm[1] = normal[1]
            norm[2] = normal[2]
            v_dist[idx] = distance

    def add(self, ps):

        self.find_nearest(ps.verts)
        mask = self.distance < ps.rads
        outer_mask = np_dot(self.nearest[mask] - ps.verts[mask], self.normals[mask]) >= 0
        sign = np.ones(outer_mask.shape, dtype=np.int32)
        sign[outer_mask] = -1
        ps.verts[mask] = self.nearest[mask] + self.normals[mask] * ps.rads[mask, np.newaxis] * sign[:, np.newaxis]
        ps.vel[mask] = reflect(ps.vel[mask], self.normals[mask]) * self.absorption
        ps.force_resultant[mask] = reflect(ps.force_resultant[mask], self.normals[mask]) * self.absorption

Methods

def add(self, ps)
Expand source code
def add(self, ps):

    self.find_nearest(ps.verts)
    mask = self.distance < ps.rads
    outer_mask = np_dot(self.nearest[mask] - ps.verts[mask], self.normals[mask]) >= 0
    sign = np.ones(outer_mask.shape, dtype=np.int32)
    sign[outer_mask] = -1
    ps.verts[mask] = self.nearest[mask] + self.normals[mask] * ps.rads[mask, np.newaxis] * sign[:, np.newaxis]
    ps.vel[mask] = reflect(ps.vel[mask], self.normals[mask]) * self.absorption
    ps.force_resultant[mask] = reflect(ps.force_resultant[mask], self.normals[mask]) * self.absorption
def find_nearest(self, verts)
Expand source code
def find_nearest(self, verts):
    v_nearest = self.nearest
    v_normals = self.normals
    v_dist = self.distance
    for v, near, norm, idx in zip(verts, v_nearest, v_normals, range(len(verts))):
        nearest, normal, _, distance = self.bvh.find_nearest(v)

        near[0] = nearest[0]
        near[1] = nearest[1]
        near[2] = nearest[2]
        norm[0] = normal[0]
        norm[1] = normal[1]
        norm[2] = normal[2]
        v_dist[idx] = distance
def setup(self, ps)
Expand source code
def setup(self, ps):
    self.nearest = np.zeros(ps.verts.shape, dtype=np.float64)
    self.normals = np.zeros(ps.verts.shape, dtype=np.float64)
    self.distance = np.zeros(len(ps.verts), dtype=np.float64)
class SvPinForce (indices, pin_type, pins_goal_pos, use_pins_goal)
Expand source code
class SvPinForce():
    def __init__(self, indices, pin_type, pins_goal_pos, use_pins_goal):

        self.pins = np.array(indices)
        self.unpinned = []
        self.use_pins_goal = use_pins_goal
        self.pins_goal_pos = np.array(pins_goal_pos)
        self.pin_force = True
        self.pin_type = pin_type_get(pin_type)

    def setup(self, ps):
        if self.pins.dtype == np.int32:
            if len(self.pins) == len(ps.verts):
                self.pins = self.pins == 1
                self.unpinned = np.invert(self.pins)
            else:
                self.unpinned = np.ones(len(ps.verts), dtype=np.bool_)
                self.unpinned[self.pins] = False
        for axis in self.pin_type:
            ps.vel[self.pins, axis] = 0

    def add(self, ps):
        if self.use_pins_goal:
            ps.verts[self.pins, :] = self.pins_goal_pos
        ps.params["Pins Reactions"][self.pins] = -ps.force_resultant[self.pins]
        for i in range(3):
            if not i in self.pin_type:
                ps.params["Pins Reactions"][:, i] = 0
        for axis in self.pin_type:

            ps.vel[self.pins, axis] = 0
            ps.force_resultant[self.pins, axis] = 0

        ps.params['unpinned'][self.pins] = False

Methods

def add(self, ps)
Expand source code
def add(self, ps):
    if self.use_pins_goal:
        ps.verts[self.pins, :] = self.pins_goal_pos
    ps.params["Pins Reactions"][self.pins] = -ps.force_resultant[self.pins]
    for i in range(3):
        if not i in self.pin_type:
            ps.params["Pins Reactions"][:, i] = 0
    for axis in self.pin_type:

        ps.vel[self.pins, axis] = 0
        ps.force_resultant[self.pins, axis] = 0

    ps.params['unpinned'][self.pins] = False
def setup(self, ps)
Expand source code
def setup(self, ps):
    if self.pins.dtype == np.int32:
        if len(self.pins) == len(ps.verts):
            self.pins = self.pins == 1
            self.unpinned = np.invert(self.pins)
        else:
            self.unpinned = np.ones(len(ps.verts), dtype=np.bool_)
            self.unpinned[self.pins] = False
    for axis in self.pin_type:
        ps.vel[self.pins, axis] = 0
class SvPolygonsAngleForce (polygons, polygons_k, fixed_angle, use_fix_angle)
Expand source code
class SvPolygonsAngleForce():
    def __init__(self, polygons, polygons_k, fixed_angle, use_fix_angle):
        self.polygons = np.array(polygons)
        self.spring_k = np.array(polygons_k)
        self.use_fix_angle = use_fix_angle
        self.fixed_angle = fixed_angle
        self.rest_angles = np.array(fixed_angle)
        self.edges = polygons_to_edges_np([polygons], True, False)[0]
        ad_faces = adjacent_faces_number(self.edges, polygons)
        e_sorted = [sorted(e) for e in self.edges]
        ad_faces = [[] for e in self.edges]
        for idp, pol in enumerate(polygons):
            for edge in zip(pol, pol[1:] + [pol[0]]):
                e_s = sorted(edge)
                if e_s in e_sorted:
                    idx = e_sorted.index(e_s)
                    ad_faces[idx].append(idp)

        self.adjacent_faces = ad_faces
        valid_adjecent_faces = []
        valid_edges = []
        for idx, edg in enumerate(self.adjacent_faces):
            if len(edg) > 1:
                faces_idx = [edg[0], edg[1]]
                valid_adjecent_faces.append(faces_idx)
                valid_edges.append(e_sorted[idx])
            self.np_adjecent_faces = np.array(valid_adjecent_faces)
            self.valid_edges = np.array(valid_edges)

    def setup(self, ps):
        if not self.use_fix_angle:
            pol_v = ps.verts[self.polygons, :]
            pols_normal = pols_normals(pol_v, 1)
            dot_p = np_dot(pols_normal[self.np_adjecent_faces[:, 0]], pols_normal[self.np_adjecent_faces[:, 1]])
            rest_angles = np.arccos(np.clip(dot_p, -1.0, 1.0))

            self.rest_angles = rest_angles

    def add(self, ps):
        pol_v = ps.verts[self.polygons, :]
        pols_normal = pols_normals(pol_v, 1)
        v1 = pols_normal[self.np_adjecent_faces[:, 0]]
        v2 = pols_normal[self.np_adjecent_faces[:, 1]]

        act_angles = np.arccos(np.clip(np_dot(v1, v2), -1.0, 1.0))
        average_vector = (v1 + v2)/2

        force = average_vector * ((self.rest_angles - act_angles) * self.spring_k)[:, np.newaxis]

        np.add.at(ps.force_resultant, self.valid_edges[:, 0], force)
        np.add.at(ps.force_resultant, self.valid_edges[:, 1], force)

Methods

def add(self, ps)
Expand source code
def add(self, ps):
    pol_v = ps.verts[self.polygons, :]
    pols_normal = pols_normals(pol_v, 1)
    v1 = pols_normal[self.np_adjecent_faces[:, 0]]
    v2 = pols_normal[self.np_adjecent_faces[:, 1]]

    act_angles = np.arccos(np.clip(np_dot(v1, v2), -1.0, 1.0))
    average_vector = (v1 + v2)/2

    force = average_vector * ((self.rest_angles - act_angles) * self.spring_k)[:, np.newaxis]

    np.add.at(ps.force_resultant, self.valid_edges[:, 0], force)
    np.add.at(ps.force_resultant, self.valid_edges[:, 1], force)
def setup(self, ps)
Expand source code
def setup(self, ps):
    if not self.use_fix_angle:
        pol_v = ps.verts[self.polygons, :]
        pols_normal = pols_normals(pol_v, 1)
        dot_p = np_dot(pols_normal[self.np_adjecent_faces[:, 0]], pols_normal[self.np_adjecent_faces[:, 1]])
        rest_angles = np.arccos(np.clip(dot_p, -1.0, 1.0))

        self.rest_angles = rest_angles
class SvRandomForce (random_force, random_variation, random_seed)
Expand source code
class SvRandomForce():
    def __init__(self, random_force, random_variation, random_seed):

        # random_seed, random_force, random_variation = local_params
        np_random_force = np.array(random_force)

        np_random_variation = np.array(random_variation)
        random_force = np_random_force[:, np.newaxis]
        random_variation = np_random_variation[:, np.newaxis]
        random_variate = any(random_variation > 1e-6)
        self.seed = random_seed[0]
        self.random_force = random_force
        self.random_variate = random_variate
        self.random_variation = random_variation

    def setup(self, ps):
        np.random.seed(int(self.seed))
        self.random_v = self.random_force * np.random.random((ps.v_len, 3)) - self.random_force / 2


    def add(self, ps):

        if self.random_variate:
            random_var = 2 * self.random_force * np.random.random((ps.v_len, 3)) - self.random_force
            self.random_v = self.random_v * (1 - self.random_variation) + random_var * self.random_variation
        ps.force_resultant += self.random_v

Methods

def add(self, ps)
Expand source code
def add(self, ps):

    if self.random_variate:
        random_var = 2 * self.random_force * np.random.random((ps.v_len, 3)) - self.random_force
        self.random_v = self.random_v * (1 - self.random_variation) + random_var * self.random_variation
    ps.force_resultant += self.random_v
def setup(self, ps)
Expand source code
def setup(self, ps):
    np.random.seed(int(self.seed))
    self.random_v = self.random_force * np.random.random((ps.v_len, 3)) - self.random_force / 2
class SvSpringsForce (springs, spring_k, fixed_len, clamp, use_fix_len)
Expand source code
class SvSpringsForce():
    def __init__(self, springs, spring_k, fixed_len, clamp, use_fix_len):
        self.springs = np.array(springs)
        self.spring_k = np.array(spring_k)
        self.use_fix_len = use_fix_len
        self.fixed_len = fixed_len
        self.dist_rest = fixed_len
        self.clamp = np.array(clamp)
        self.use_clamp = np.any(self.clamp > 0)

    def setup(self, ps):
        if self.use_fix_len or self.fixed_len[0] > 0:
            self.dist_rest = self.fixed_len
            self.clamp_distance = self.dist_rest * self.clamp
        else:
            self.dist_rest = calc_rest_length(ps.verts, self.springs)
            self.clamp_distance = self.dist_rest * self.clamp

    def add(self, ps):

        id0 = self.springs[:, 0]
        id1 = self.springs[:, 1]

        dif_v = ps.verts[id0, :] - ps.verts[id1, :]
        dist = np.linalg.norm(dif_v, axis=1)

        if self.use_clamp:
            dif_l = np.clip(dist - self.dist_rest, -self.clamp_distance, self.clamp_distance)
        else:
            dif_l = dist - self.dist_rest
        dist[dist == 0] = 1

        dif_v /= dist[:, np.newaxis]
        force = dif_v * (dif_l * self.spring_k)[:, np.newaxis]

        np.subtract.at(ps.force_resultant, id0, force)
        np.add.at(ps.force_resultant, id1, force)

Methods

def add(self, ps)
Expand source code
def add(self, ps):

    id0 = self.springs[:, 0]
    id1 = self.springs[:, 1]

    dif_v = ps.verts[id0, :] - ps.verts[id1, :]
    dist = np.linalg.norm(dif_v, axis=1)

    if self.use_clamp:
        dif_l = np.clip(dist - self.dist_rest, -self.clamp_distance, self.clamp_distance)
    else:
        dif_l = dist - self.dist_rest
    dist[dist == 0] = 1

    dif_v /= dist[:, np.newaxis]
    force = dif_v * (dif_l * self.spring_k)[:, np.newaxis]

    np.subtract.at(ps.force_resultant, id0, force)
    np.add.at(ps.force_resultant, id1, force)
def setup(self, ps)
Expand source code
def setup(self, ps):
    if self.use_fix_len or self.fixed_len[0] > 0:
        self.dist_rest = self.fixed_len
        self.clamp_distance = self.dist_rest * self.clamp
    else:
        self.dist_rest = calc_rest_length(ps.verts, self.springs)
        self.clamp_distance = self.dist_rest * self.clamp
class SvTimedForce (force, start, end)
Expand source code
class SvTimedForce():
    def __init__(self, force, start, end):

        self.force = force
        self.start = start
        self.end = end
        if hasattr(force,'size_changer'):
            self.size_changer = True
        if hasattr(force,'pin_force'):
            self.pin_force = True
            self.use_pins_goal = force.use_pins_goal

    def setup(self, ps):
        self.force.setup(ps)


    def add(self, ps):
        iteration = ps.iteration
        if self.end > iteration >= self.start:

            self.force.add(ps)

Methods

def add(self, ps)
Expand source code
def add(self, ps):
    iteration = ps.iteration
    if self.end > iteration >= self.start:

        self.force.add(ps)
def setup(self, ps)
Expand source code
def setup(self, ps):
    self.force.setup(ps)
class SvVortexForce (location, direction, rot_strength, inflow_strength, forward_strength, clamp, decay_power)
Expand source code
class SvVortexForce():

    def __init__(self, location, direction, rot_strength, inflow_strength, forward_strength, clamp, decay_power):


        np_location = np.array(location)
        np_direction = np.array(direction)
        np_rot_strength = np.array(rot_strength)
        np_inflow_strength = np.array(inflow_strength)
        np_forward_strength = np.array(forward_strength)
        np_clamp = np.array(clamp)
        np_decay_pow = np.array(decay_power)
        params = numpy_match_long_repeat([np_location, np_direction, np_rot_strength, np_inflow_strength, np_forward_strength, np_clamp, np_decay_pow])
        self.points = params[0]
        self.direction = params[1]/np.linalg.norm(params[1], axis=1)[:, np.newaxis]
        self.rot_strength = params[2]
        self.use_rotation = np.any(params[2] != 0)
        self.inflow_strength = params[3]
        self.use_inflow = np.any(params[3] != 0)
        self.forward_strength = params[4]
        self.use_forward = np.any(params[4] != 0)
        self.use_vortex = np.any([self.use_rotation, self.use_inflow, self.use_forward])
        self.clamp = params[5]
        self.decay = params[6]



    def setup(self, ps):
        pass


    def add(self, ps):

        if not self.use_vortex:
            return

        v_attract = ps.verts[np.newaxis, :, :] - self.points[:, np.newaxis, :]
        vect_proy = np_dot(v_attract, self.direction[:, np.newaxis, :],axis=2)

        closest_point = self.points[:, np.newaxis, :] +vect_proy[:, :, np.newaxis] * self.direction[:, np.newaxis, :]

        dif_v = closest_point -  ps.verts[np.newaxis, :, :]
        dist_attract = np.linalg.norm(dif_v, axis=2)
        mask_true = dist_attract < self.clamp[:, np.newaxis]

        dist_attract2 = np.power(dist_attract, self.decay[:, np.newaxis])
        dist_attract_cor = np.clip(dist_attract2, 1e-2, 1e4)


        v_attract_normal = dif_v/ dist_attract_cor[:, :,np.newaxis]
        v_attract[:] = 0

        if self.use_rotation:
            v_rotation = np.cross(v_attract_normal, self.direction[:, np.newaxis, :]) * self.rot_strength[:, np.newaxis, np.newaxis]
            v_attract[mask_true] += v_rotation[mask_true]

        if self.use_forward:
            v_forward = self.direction[:, np.newaxis, :] *  self.forward_strength[:, np.newaxis, np.newaxis] / dist_attract_cor[:, :,np.newaxis]
            v_attract[mask_true] += v_forward[mask_true]

        if self.use_inflow:
            v_attract_normal *= self.inflow_strength[:, np.newaxis, np.newaxis]
            v_attract[mask_true] += v_attract_normal[mask_true]


        r_attract = np.sum(v_attract, axis=0)
        ps.force_resultant += r_attract

Methods

def add(self, ps)
Expand source code
def add(self, ps):

    if not self.use_vortex:
        return

    v_attract = ps.verts[np.newaxis, :, :] - self.points[:, np.newaxis, :]
    vect_proy = np_dot(v_attract, self.direction[:, np.newaxis, :],axis=2)

    closest_point = self.points[:, np.newaxis, :] +vect_proy[:, :, np.newaxis] * self.direction[:, np.newaxis, :]

    dif_v = closest_point -  ps.verts[np.newaxis, :, :]
    dist_attract = np.linalg.norm(dif_v, axis=2)
    mask_true = dist_attract < self.clamp[:, np.newaxis]

    dist_attract2 = np.power(dist_attract, self.decay[:, np.newaxis])
    dist_attract_cor = np.clip(dist_attract2, 1e-2, 1e4)


    v_attract_normal = dif_v/ dist_attract_cor[:, :,np.newaxis]
    v_attract[:] = 0

    if self.use_rotation:
        v_rotation = np.cross(v_attract_normal, self.direction[:, np.newaxis, :]) * self.rot_strength[:, np.newaxis, np.newaxis]
        v_attract[mask_true] += v_rotation[mask_true]

    if self.use_forward:
        v_forward = self.direction[:, np.newaxis, :] *  self.forward_strength[:, np.newaxis, np.newaxis] / dist_attract_cor[:, :,np.newaxis]
        v_attract[mask_true] += v_forward[mask_true]

    if self.use_inflow:
        v_attract_normal *= self.inflow_strength[:, np.newaxis, np.newaxis]
        v_attract[mask_true] += v_attract_normal[mask_true]


    r_attract = np.sum(v_attract, axis=0)
    ps.force_resultant += r_attract
def setup(self, ps)
Expand source code
def setup(self, ps):
    pass
class SvWorldForce (force, strength, mass_proportional)
Expand source code
class SvWorldForce():
    def __init__(self, force, strength, mass_proportional):

        self.strength, self.force = numpy_match_long_repeat([np.array(strength), np.array(force)])

        self.force *= self.strength[:, np.newaxis]
        self.func = self.apply_mass_proportional
        self.mass_proportional = mass_proportional

    def setup(self, ps):
        size_change = ps.size_change
        if len(self.force) > 1:
            self.force2 = numpy_fit_long_repeat([self.force], ps.v_len)[0]
        if size_change and self.mass_proportional:
            self.func = self.apply_mass_proportional

        elif self.mass_proportional:

            self.force_final = self.force * ps.mass[:, np.newaxis]
            self.add = self.apply_dependant
        else:

            self.force_final = self.force
            self.add = self.apply_dependant

    def apply_mass_proportional(self, ps):
        '''apply constant forces'''

        ps.force_resultant += self.force_final * ps.mass[:, np.newaxis]

    def apply_dependant(self, ps):
        '''apply constant forces'''

        ps.force_resultant += self.force_final

Methods

def apply_dependant(self, ps)

apply constant forces

Expand source code
def apply_dependant(self, ps):
    '''apply constant forces'''

    ps.force_resultant += self.force_final
def apply_mass_proportional(self, ps)

apply constant forces

Expand source code
def apply_mass_proportional(self, ps):
    '''apply constant forces'''

    ps.force_resultant += self.force_final * ps.mass[:, np.newaxis]
def setup(self, ps)
Expand source code
def setup(self, ps):
    size_change = ps.size_change
    if len(self.force) > 1:
        self.force2 = numpy_fit_long_repeat([self.force], ps.v_len)[0]
    if size_change and self.mass_proportional:
        self.func = self.apply_mass_proportional

    elif self.mass_proportional:

        self.force_final = self.force * ps.mass[:, np.newaxis]
        self.add = self.apply_dependant
    else:

        self.force_final = self.force
        self.add = self.apply_dependant