Module sverchok.utils.modules.geom_primitives

Expand source code
# This file is part of project Sverchok. It's copyrighted by the contributors
# recorded in the version control history of the file, available from
# its original location https://github.com/nortikin/sverchok/commit/master
#  
# SPDX-License-Identifier: GPL3
# License-Filename: LICENSE

import math
from math import sin, cos, sqrt, acos, pi, atan
import numpy as np

from sverchok.utils.sv_bmesh_utils import bmesh_from_pydata
from sverchok.utils.sv_bmesh_utils import pydata_from_bmesh

# constants
PI = math.pi
HALF_PI = PI / 2
QUARTER_PI = PI / 4
TAU = PI * 2
TWO_PI = TAU


def circle(radius=1.0, phase=0, nverts=20, matrix=None, mode='pydata'):
    '''
    parameters:
        radius: float
        phase:  where to start the unit circle
        nverts: number of verts of the circle
        matrix: transformation matrix [not implemented yet]
        mode:   'np' or 'pydata'

        :  'pydata'
        usage:
            Verts, Edges, Faces = circle(nverts=20, radius=1.6, mode='pydata')
        info:
            Each return type will be a nested list.
            Verts: will generate [[x0,y0,z0],[x1,y1,z1], ....[xN,yN,zN]]
            Edges: will generate [[a,b],[b,c], ....[n,a]]
            Faces: a single wrapped polygon around the bounds of the shape

        :  'np'
        usage:
            Verts, Edges, Faces = circle(nverts=20, radius=1.6, mode='np')

    outputs Verts, Edges, Faces

        info:
            Each return type will be a numpy array
            Verts: generates [n*4] - Array([[x0,y0,z0,w0],[x1,y1,z1,w1], ....[xN,yN,zN,wN]])
            Edges: will be a [n*2] - Array([[a,b],[b,c], ....[n,a]])
            Faces: a single wrapped polygon around the bounds of the shape

            to convert to pydata please consult the numpy manual.

    '''

    if mode in {'pydata', 'bm'}:

        verts = []
        theta = TAU / nverts
        for i in range(nverts):
            rad = i * theta
            verts.append((math.sin(rad + phase) * radius, math.cos(rad + phase) * radius, 0))

        edges = [[i, i+1] for i in range(nverts-1)] + [[nverts-1, 0]]
        faces = [i for i in range(nverts)]

        if mode == 'pydata':
            return verts, edges, [faces]
        else:
            return bmesh_from_pydata(verts, edges, [faces])

    if mode == 'np':

        t = np.linspace(0, np.pi * 2 * (nverts - 1 / nverts), nverts)
        circ = np.array([np.cos(t + phase) * radius, np.sin(t + phase) * radius, np.zeros(nverts), np.zeros(nverts)])
        verts = np.transpose(circ)
        edges = np.array([[i, i+1] for i in range(nverts-1)] + [[nverts-1, 0]])
        faces = np.array([[i for i in range(nverts)]])
        return verts, edges, faces



def arc(radius=1.0, phase=0, angle=PI, nverts=20, matrix=None, mode='pydata'):
    '''
    arc is similar to circle, with the exception that it does not close.

    parameters:
        radius: float
        phase:  where to start the arc
        nverts: number of verts of the arc
        matrix: transformation matrix [not implemented yet]
        mode:   'np' or 'pydata'

    outputs Verts, Edges, Faces

        info:
            Each return type will be a nested list.
            Verts: will generate [[x0,y0,z0],[x1,y1,z1], ....[xN,yN,zN]]
            Edges: will generate [[a,b],[b,c], ...] (not cyclic)
            Faces: a single wrapped polygon around the bounds of the shape

    '''

    if mode in {'pydata', 'bm'}:

        verts = []
        theta = angle / (nverts-1)
        for i in range(nverts):
            rad = i * theta
            verts.append((math.sin(rad + phase) * radius, math.cos(rad + phase) * radius, 0))

        edges = [[i, i+1] for i in range(nverts-1)]
        faces = [i for i in range(nverts)]

        if mode == 'pydata':
            return verts, edges, [faces]
        else:
            return bmesh_from_pydata(verts, edges, [faces])

    if mode == 'np':

        t = np.linspace(0, angle, nverts)
        circ = np.array([np.cos(t + phase) * radius, np.sin(t + phase) * radius, np.zeros(nverts), np.zeros(nverts)])
        verts = np.transpose(circ)
        edges = np.array([[i, i+1] for i in range(nverts-1)])
        faces = np.array([[i for i in range(nverts)]])
        return verts, edges, faces


def quad(side=1.0, radius=0.0, nverts=5, matrix=None, mode='pydata'):
    '''
    parameters:
        side:   gives the length of side of the rect
        radius: gives the radius of the rounded corners.
                - If the passed radius is equal to side/2 then you'll get a circle
                - if the passed radius exceeds side/2, then you will get rect
        nverts: if nverts is equal or greater than 2 then you will get rounded courners
                if the above radius is smaller or equal to side/2.
        matrix: ---
        mode:   ---

    outputs Verts, Edges, Faces

        info:
            Each return type will be a nested list.
            Verts: will generate [[x0,y0,z0],[x1,y1,z1], ....[xN,yN,zN]]
            Edges: will generate [[a,b],[b,c], ....[n,a]]
            Faces: a single wrapped polygon around the bounds of the shape


    '''

    if mode in {'pydata', 'bm'}:
        dim = side / 2

        edges, faces = [], []

        if radius > 0.0 and radius < dim and nverts >= 2:
            verts = []
            theta = HALF_PI / (nverts-1)
            ext = dim - radius
            coords = [[ext, ext], [ext, -ext], [-ext, -ext], [-ext, ext]]
            for (x, y), corner in zip(coords, range(4)):
                for i in range(nverts):
                    rad = theta * i
                    verts.append(((math.sin(rad + (corner*HALF_PI)) * radius) + x, (math.cos(rad + (corner*HALF_PI)) * radius) + y, 0))

        elif radius > 0.0 and radius == dim and nverts >= 2:
            verts, edges, faces = circle(radius=dim, nverts=((nverts*4)-4))

        else:
            verts = [[-dim, dim, 0], [dim, dim, 0], [dim, -dim, 0], [-dim, -dim, 0]]
        # elif radius == 0.0 or (radius > 0.0 and radius > dim):

        num_verts = len(verts)
        if not edges:
            edges = [[i, i+1] for i in range(num_verts-1)] + [[num_verts-1, 0]]
            faces = [i for i in range(num_verts)]

        if mode == 'pydata':
            return verts, edges, [faces]
        else:
            return bmesh_from_pydata(verts, edges, [faces])

    if mode == 'np':
        pass


def arc_slice(outer_radius=1.0, inner_radius=0.8, phase=0, angle=PI, nverts=20, matrix=None, mode='pydata'):
    '''
    this generator makes a flat donut section. Like arc, but with a inner and outer radius to determine
    the thickness of the slice.

    '''
    if mode in {'pydata', 'bm'}:

        # if outer_radius == inner_radius:
        #    return arc ? :)  or [], [], []

        if outer_radius < inner_radius:
            outer_radius, inner_radius = inner_radius, outer_radius

        verts = []
        theta = angle / (nverts-1)

        for i in range(nverts):
            rad = i * theta
            verts.append((math.sin(rad + phase) * outer_radius, math.cos(rad + phase) * outer_radius, 0))

        for i in reversed(range(nverts)):
            rad = i * theta
            verts.append((math.sin(rad + phase) * inner_radius, math.cos(rad + phase) * inner_radius, 0))

        num_verts = len(verts)
        edges = [[i, i+1] for i in range(num_verts-1)] + [[num_verts-1, 0]]
        faces = [i for i in range(num_verts)]

        if mode == 'pydata':
            return verts, edges, [faces]
        else:
            return bmesh_from_pydata(verts, edges, [faces])

    if mode == 'np':
        pass


def rect(dim_x=1.0, dim_y=1.62, radius=0.0, nverts=5, matrix=None, mode='pydata'):

    xdim = dim_x / 2
    ydim = dim_y / 2

    if mode in {'pydata', 'bm'}:
        verts = []

        if radius == 0.0 or nverts < 2:
            verts = [[-xdim, ydim, 0], [xdim, ydim, 0], [xdim, -ydim, 0], [-xdim, -ydim, 0]]

        elif radius > 0.0 and radius < min(abs(dim_x), abs(dim_y)) and nverts >= 2:
            theta = HALF_PI / (nverts-1)
            xdim = xdim - radius
            ydim = ydim - radius
            coords = [[xdim, ydim], [xdim, -ydim], [-xdim, -ydim], [-xdim, ydim]]
            for (x, y), corner in zip(coords, range(4)):
                for i in range(nverts):
                    rad = theta * i
                    verts.append(((math.sin(rad + (corner*HALF_PI)) * radius) + x, (math.cos(rad + (corner*HALF_PI)) * radius) + y, 0))

        num_verts = len(verts)
        edges = [[i, i+1] for i in range(num_verts-1)] + [[num_verts-1, 0]]
        faces = [i for i in range(num_verts)]

        if mode == 'pydata':
            return verts, edges, [faces]
        else:
            return bmesh_from_pydata(verts, edges, [faces])

    if mode == 'np':
        pass



def grid(dim_x=1.0, dim_y=1.62, nx=2, ny=2, anchor=0, matrix=None, mode='pydata'):
    '''

    dim_x   -   total dimension on x side
    dim_y   -   total dimension on y side
    nx      -   num verts on x side
    ny      -   num verts on y side
    anchor  -   1 --- 2 --- 3
                -           -
                8     0     4
                -           -
                7 --- 6 --- 5
                default is centered (0)

    '''

    xside = dim_x / 2
    yside = dim_y / 2
    nx = max(2, nx)
    ny = max(2, ny)

    anchors = {
        1: (0,      dim_x, 0,      dim_y),
        2: (-xside, xside, 0,      dim_y),
        3: (-dim_x, 0,     0,      dim_y),
        4: (-dim_x, 0,     -yside, yside),
        5: (-dim_x, 0,     0,     -dim_y),
        6: (-xside, xside, 0,     -dim_y),
        7: (0,      dim_x, 0,     -dim_y),
        8: (0,      dim_x, -yside, yside),
        0: (-xside, xside, -yside, yside)
    }.get(anchor, (-xside, xside, -yside, yside))


    if mode in {'pydata', 'bm'}:
        verts = []
        faces = []
        add_face = faces.append
        total_range = ((ny-1) * (nx))

        a, b = anchors[:2]
        c, d = anchors[2:]
        x = np.linspace(a, b, nx)
        y = np.linspace(c, d, ny)
        f = np.vstack(np.meshgrid(x, y, 0)).reshape(3, -1).T
        verts = f.tolist()

        for i in range(total_range):
            if not ((i + 1) % nx == 0):  # +1 is the shift
                add_face([i, i+nx, i+nx+1, i+1])  # clockwise

        if mode == 'pydata':
            return verts, [], faces
        else:
            return bmesh_from_pydata(vert, [], faces)


    if mode == 'np':
        pass


def line(p1=[(0,0,0)], p2=[(1,0,0)], nverts=2, mode='pydata'):
    '''
    line(p1=[(0,0,0)], p2=[(1,0,0)], nverts=2, mode='pydata')
    not finished..

    '''
    nv = nverts

    if mode in {'pydata', 'bm'}:
        verts = []
        edges = []

        num_verts = 0
        for v1, v2 in zip(p1, p2):
            if nv == 2:
                verts.extend([v1, v2])
            elif nv > 2:
                x_seg = (v2[0] - v1[0]) / (nv-1)
                y_seg = (v2[1] - v1[1]) / (nv-1)
                z_seg = (v2[2] - v1[2]) / (nv-1)
                verts.append(v1)
                verts.extend([[v1[0] + (x_seg * i), v1[1] + (y_seg * i), v1[2] + (z_seg * i)] for i in range(1, nv-1)])
                verts.append(v2)

            edges.extend([[i + num_verts, i + 1 + num_verts] for i in range(nv-1)])
            num_verts = len(verts)

        if mode == 'pydata':
            return verts, edges
        else:
            return bmesh_from_pydata(verts, edges, [])

    if mode == 'np':
        pass

Functions

def arc(radius=1.0, phase=0, angle=3.141592653589793, nverts=20, matrix=None, mode='pydata')

arc is similar to circle, with the exception that it does not close.

parameters: radius: float phase: where to start the arc nverts: number of verts of the arc matrix: transformation matrix [not implemented yet] mode: 'np' or 'pydata'

outputs Verts, Edges, Faces

info:
    Each return type will be a nested list.
    Verts: will generate [[x0,y0,z0],[x1,y1,z1], ....[xN,yN,zN]]
    Edges: will generate [[a,b],[b,c], ...] (not cyclic)
    Faces: a single wrapped polygon around the bounds of the shape
Expand source code
def arc(radius=1.0, phase=0, angle=PI, nverts=20, matrix=None, mode='pydata'):
    '''
    arc is similar to circle, with the exception that it does not close.

    parameters:
        radius: float
        phase:  where to start the arc
        nverts: number of verts of the arc
        matrix: transformation matrix [not implemented yet]
        mode:   'np' or 'pydata'

    outputs Verts, Edges, Faces

        info:
            Each return type will be a nested list.
            Verts: will generate [[x0,y0,z0],[x1,y1,z1], ....[xN,yN,zN]]
            Edges: will generate [[a,b],[b,c], ...] (not cyclic)
            Faces: a single wrapped polygon around the bounds of the shape

    '''

    if mode in {'pydata', 'bm'}:

        verts = []
        theta = angle / (nverts-1)
        for i in range(nverts):
            rad = i * theta
            verts.append((math.sin(rad + phase) * radius, math.cos(rad + phase) * radius, 0))

        edges = [[i, i+1] for i in range(nverts-1)]
        faces = [i for i in range(nverts)]

        if mode == 'pydata':
            return verts, edges, [faces]
        else:
            return bmesh_from_pydata(verts, edges, [faces])

    if mode == 'np':

        t = np.linspace(0, angle, nverts)
        circ = np.array([np.cos(t + phase) * radius, np.sin(t + phase) * radius, np.zeros(nverts), np.zeros(nverts)])
        verts = np.transpose(circ)
        edges = np.array([[i, i+1] for i in range(nverts-1)])
        faces = np.array([[i for i in range(nverts)]])
        return verts, edges, faces
def arc_slice(outer_radius=1.0, inner_radius=0.8, phase=0, angle=3.141592653589793, nverts=20, matrix=None, mode='pydata')

this generator makes a flat donut section. Like arc, but with a inner and outer radius to determine the thickness of the slice.

Expand source code
def arc_slice(outer_radius=1.0, inner_radius=0.8, phase=0, angle=PI, nverts=20, matrix=None, mode='pydata'):
    '''
    this generator makes a flat donut section. Like arc, but with a inner and outer radius to determine
    the thickness of the slice.

    '''
    if mode in {'pydata', 'bm'}:

        # if outer_radius == inner_radius:
        #    return arc ? :)  or [], [], []

        if outer_radius < inner_radius:
            outer_radius, inner_radius = inner_radius, outer_radius

        verts = []
        theta = angle / (nverts-1)

        for i in range(nverts):
            rad = i * theta
            verts.append((math.sin(rad + phase) * outer_radius, math.cos(rad + phase) * outer_radius, 0))

        for i in reversed(range(nverts)):
            rad = i * theta
            verts.append((math.sin(rad + phase) * inner_radius, math.cos(rad + phase) * inner_radius, 0))

        num_verts = len(verts)
        edges = [[i, i+1] for i in range(num_verts-1)] + [[num_verts-1, 0]]
        faces = [i for i in range(num_verts)]

        if mode == 'pydata':
            return verts, edges, [faces]
        else:
            return bmesh_from_pydata(verts, edges, [faces])

    if mode == 'np':
        pass
def circle(radius=1.0, phase=0, nverts=20, matrix=None, mode='pydata')

parameters: radius: float phase: where to start the unit circle nverts: number of verts of the circle matrix: transformation matrix [not implemented yet] mode: 'np' or 'pydata'

:  'pydata'
usage:
    Verts, Edges, Faces = circle(nverts=20, radius=1.6, mode='pydata')
info:
    Each return type will be a nested list.
    Verts: will generate [[x0,y0,z0],[x1,y1,z1], ....[xN,yN,zN]]
    Edges: will generate [[a,b],[b,c], ....[n,a]]
    Faces: a single wrapped polygon around the bounds of the shape

:  'np'
usage:
    Verts, Edges, Faces = circle(nverts=20, radius=1.6, mode='np')

outputs Verts, Edges, Faces

info:
    Each return type will be a numpy array
    Verts: generates [n*4] - Array([[x0,y0,z0,w0],[x1,y1,z1,w1], ....[xN,yN,zN,wN]])
    Edges: will be a [n*2] - Array([[a,b],[b,c], ....[n,a]])
    Faces: a single wrapped polygon around the bounds of the shape

    to convert to pydata please consult the numpy manual.
Expand source code
def circle(radius=1.0, phase=0, nverts=20, matrix=None, mode='pydata'):
    '''
    parameters:
        radius: float
        phase:  where to start the unit circle
        nverts: number of verts of the circle
        matrix: transformation matrix [not implemented yet]
        mode:   'np' or 'pydata'

        :  'pydata'
        usage:
            Verts, Edges, Faces = circle(nverts=20, radius=1.6, mode='pydata')
        info:
            Each return type will be a nested list.
            Verts: will generate [[x0,y0,z0],[x1,y1,z1], ....[xN,yN,zN]]
            Edges: will generate [[a,b],[b,c], ....[n,a]]
            Faces: a single wrapped polygon around the bounds of the shape

        :  'np'
        usage:
            Verts, Edges, Faces = circle(nverts=20, radius=1.6, mode='np')

    outputs Verts, Edges, Faces

        info:
            Each return type will be a numpy array
            Verts: generates [n*4] - Array([[x0,y0,z0,w0],[x1,y1,z1,w1], ....[xN,yN,zN,wN]])
            Edges: will be a [n*2] - Array([[a,b],[b,c], ....[n,a]])
            Faces: a single wrapped polygon around the bounds of the shape

            to convert to pydata please consult the numpy manual.

    '''

    if mode in {'pydata', 'bm'}:

        verts = []
        theta = TAU / nverts
        for i in range(nverts):
            rad = i * theta
            verts.append((math.sin(rad + phase) * radius, math.cos(rad + phase) * radius, 0))

        edges = [[i, i+1] for i in range(nverts-1)] + [[nverts-1, 0]]
        faces = [i for i in range(nverts)]

        if mode == 'pydata':
            return verts, edges, [faces]
        else:
            return bmesh_from_pydata(verts, edges, [faces])

    if mode == 'np':

        t = np.linspace(0, np.pi * 2 * (nverts - 1 / nverts), nverts)
        circ = np.array([np.cos(t + phase) * radius, np.sin(t + phase) * radius, np.zeros(nverts), np.zeros(nverts)])
        verts = np.transpose(circ)
        edges = np.array([[i, i+1] for i in range(nverts-1)] + [[nverts-1, 0]])
        faces = np.array([[i for i in range(nverts)]])
        return verts, edges, faces
def grid(dim_x=1.0, dim_y=1.62, nx=2, ny=2, anchor=0, matrix=None, mode='pydata')

dim_x - total dimension on x side dim_y - total dimension on y side nx - num verts on x side ny - num verts on y side anchor - 1 — 2 — 3 - - 8 0 4 - - 7 — 6 — 5 default is centered (0)

Expand source code
def grid(dim_x=1.0, dim_y=1.62, nx=2, ny=2, anchor=0, matrix=None, mode='pydata'):
    '''

    dim_x   -   total dimension on x side
    dim_y   -   total dimension on y side
    nx      -   num verts on x side
    ny      -   num verts on y side
    anchor  -   1 --- 2 --- 3
                -           -
                8     0     4
                -           -
                7 --- 6 --- 5
                default is centered (0)

    '''

    xside = dim_x / 2
    yside = dim_y / 2
    nx = max(2, nx)
    ny = max(2, ny)

    anchors = {
        1: (0,      dim_x, 0,      dim_y),
        2: (-xside, xside, 0,      dim_y),
        3: (-dim_x, 0,     0,      dim_y),
        4: (-dim_x, 0,     -yside, yside),
        5: (-dim_x, 0,     0,     -dim_y),
        6: (-xside, xside, 0,     -dim_y),
        7: (0,      dim_x, 0,     -dim_y),
        8: (0,      dim_x, -yside, yside),
        0: (-xside, xside, -yside, yside)
    }.get(anchor, (-xside, xside, -yside, yside))


    if mode in {'pydata', 'bm'}:
        verts = []
        faces = []
        add_face = faces.append
        total_range = ((ny-1) * (nx))

        a, b = anchors[:2]
        c, d = anchors[2:]
        x = np.linspace(a, b, nx)
        y = np.linspace(c, d, ny)
        f = np.vstack(np.meshgrid(x, y, 0)).reshape(3, -1).T
        verts = f.tolist()

        for i in range(total_range):
            if not ((i + 1) % nx == 0):  # +1 is the shift
                add_face([i, i+nx, i+nx+1, i+1])  # clockwise

        if mode == 'pydata':
            return verts, [], faces
        else:
            return bmesh_from_pydata(vert, [], faces)


    if mode == 'np':
        pass
def line(p1=[(0, 0, 0)], p2=[(1, 0, 0)], nverts=2, mode='pydata')

line(p1=[(0,0,0)], p2=[(1,0,0)], nverts=2, mode='pydata') not finished..

Expand source code
def line(p1=[(0,0,0)], p2=[(1,0,0)], nverts=2, mode='pydata'):
    '''
    line(p1=[(0,0,0)], p2=[(1,0,0)], nverts=2, mode='pydata')
    not finished..

    '''
    nv = nverts

    if mode in {'pydata', 'bm'}:
        verts = []
        edges = []

        num_verts = 0
        for v1, v2 in zip(p1, p2):
            if nv == 2:
                verts.extend([v1, v2])
            elif nv > 2:
                x_seg = (v2[0] - v1[0]) / (nv-1)
                y_seg = (v2[1] - v1[1]) / (nv-1)
                z_seg = (v2[2] - v1[2]) / (nv-1)
                verts.append(v1)
                verts.extend([[v1[0] + (x_seg * i), v1[1] + (y_seg * i), v1[2] + (z_seg * i)] for i in range(1, nv-1)])
                verts.append(v2)

            edges.extend([[i + num_verts, i + 1 + num_verts] for i in range(nv-1)])
            num_verts = len(verts)

        if mode == 'pydata':
            return verts, edges
        else:
            return bmesh_from_pydata(verts, edges, [])

    if mode == 'np':
        pass
def quad(side=1.0, radius=0.0, nverts=5, matrix=None, mode='pydata')

parameters: side: gives the length of side of the rect radius: gives the radius of the rounded corners. - If the passed radius is equal to side/2 then you'll get a circle - if the passed radius exceeds side/2, then you will get rect nverts: if nverts is equal or greater than 2 then you will get rounded courners if the above radius is smaller or equal to side/2. matrix: — mode: —

outputs Verts, Edges, Faces

info:
    Each return type will be a nested list.
    Verts: will generate [[x0,y0,z0],[x1,y1,z1], ....[xN,yN,zN]]
    Edges: will generate [[a,b],[b,c], ....[n,a]]
    Faces: a single wrapped polygon around the bounds of the shape
Expand source code
def quad(side=1.0, radius=0.0, nverts=5, matrix=None, mode='pydata'):
    '''
    parameters:
        side:   gives the length of side of the rect
        radius: gives the radius of the rounded corners.
                - If the passed radius is equal to side/2 then you'll get a circle
                - if the passed radius exceeds side/2, then you will get rect
        nverts: if nverts is equal or greater than 2 then you will get rounded courners
                if the above radius is smaller or equal to side/2.
        matrix: ---
        mode:   ---

    outputs Verts, Edges, Faces

        info:
            Each return type will be a nested list.
            Verts: will generate [[x0,y0,z0],[x1,y1,z1], ....[xN,yN,zN]]
            Edges: will generate [[a,b],[b,c], ....[n,a]]
            Faces: a single wrapped polygon around the bounds of the shape


    '''

    if mode in {'pydata', 'bm'}:
        dim = side / 2

        edges, faces = [], []

        if radius > 0.0 and radius < dim and nverts >= 2:
            verts = []
            theta = HALF_PI / (nverts-1)
            ext = dim - radius
            coords = [[ext, ext], [ext, -ext], [-ext, -ext], [-ext, ext]]
            for (x, y), corner in zip(coords, range(4)):
                for i in range(nverts):
                    rad = theta * i
                    verts.append(((math.sin(rad + (corner*HALF_PI)) * radius) + x, (math.cos(rad + (corner*HALF_PI)) * radius) + y, 0))

        elif radius > 0.0 and radius == dim and nverts >= 2:
            verts, edges, faces = circle(radius=dim, nverts=((nverts*4)-4))

        else:
            verts = [[-dim, dim, 0], [dim, dim, 0], [dim, -dim, 0], [-dim, -dim, 0]]
        # elif radius == 0.0 or (radius > 0.0 and radius > dim):

        num_verts = len(verts)
        if not edges:
            edges = [[i, i+1] for i in range(num_verts-1)] + [[num_verts-1, 0]]
            faces = [i for i in range(num_verts)]

        if mode == 'pydata':
            return verts, edges, [faces]
        else:
            return bmesh_from_pydata(verts, edges, [faces])

    if mode == 'np':
        pass
def rect(dim_x=1.0, dim_y=1.62, radius=0.0, nverts=5, matrix=None, mode='pydata')
Expand source code
def rect(dim_x=1.0, dim_y=1.62, radius=0.0, nverts=5, matrix=None, mode='pydata'):

    xdim = dim_x / 2
    ydim = dim_y / 2

    if mode in {'pydata', 'bm'}:
        verts = []

        if radius == 0.0 or nverts < 2:
            verts = [[-xdim, ydim, 0], [xdim, ydim, 0], [xdim, -ydim, 0], [-xdim, -ydim, 0]]

        elif radius > 0.0 and radius < min(abs(dim_x), abs(dim_y)) and nverts >= 2:
            theta = HALF_PI / (nverts-1)
            xdim = xdim - radius
            ydim = ydim - radius
            coords = [[xdim, ydim], [xdim, -ydim], [-xdim, -ydim], [-xdim, ydim]]
            for (x, y), corner in zip(coords, range(4)):
                for i in range(nverts):
                    rad = theta * i
                    verts.append(((math.sin(rad + (corner*HALF_PI)) * radius) + x, (math.cos(rad + (corner*HALF_PI)) * radius) + y, 0))

        num_verts = len(verts)
        edges = [[i, i+1] for i in range(num_verts-1)] + [[num_verts-1, 0]]
        faces = [i for i in range(num_verts)]

        if mode == 'pydata':
            return verts, edges, [faces]
        else:
            return bmesh_from_pydata(verts, edges, [faces])

    if mode == 'np':
        pass