Module sverchok.utils.marching_cubes

Pure Python implementation of marching cubes algorithm Adapted from https://github.com/mutantbob/blender-marching-cubes/blob/master/marching-cube.py

Expand source code
"""
Pure Python implementation of marching cubes algorithm
Adapted from https://github.com/mutantbob/blender-marching-cubes/blob/master/marching-cube.py
"""
"""
   
        z 
        ^
        |
   
          4
        4-----5
       /|    /  5
      7-----6 |
      | |8  | |9
      | | 0 |10
      | 0---|-1   ->y
      |/  11|/ 1
      3-----2
     /   2
    <
   x     

This Code is based on the example from 
http://paulbourke.net/geometry/polygonise/
 by Paul Bourke,
 
 and modified by Tom Sapien to work with python within blender.

 Subsequent optimizations by Robert Forsman.

 See also https://github.com/Pyroevil/CubeSurfer for a cython derivative by Jean-Francois Gallant

 This code is under the terms of GPL
   
"""
__author__ = "Tom Sapiens and Robert Forsman"
__copyright__ = "Copyright 2011, Tom Sapiens"
__credits__ = ["Tom Sapiens", "Paul Bourke", "Robert Forsman"]
__license__ = "GPL"
__version__ = "0.1"
__maintainer__ = "Robert Forsman"
__email__ = "blender@thoth.purplefrog.com"
__status__ = "alpha"


import time
import math
from math import sqrt,sin,cos,tan
import mathutils
import bpy
from itertools import chain
import bmesh
import numpy as np

vec=mathutils.Vector
ABS=abs

edgetable=(0x0  , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
            0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
            0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
            0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
            0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c,
            0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
            0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac,
            0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
            0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c,
            0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
            0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc,
            0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
            0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c,
            0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
            0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc ,
            0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
            0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
            0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
            0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
            0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
            0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
            0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
            0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
            0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
            0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
            0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0,
            0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
            0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230,
            0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
            0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
            0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
            0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0)
tritable = [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1],
        [3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1],
        [3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1],
        [3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1],
        [9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1],
        [1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1],
        [9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1],
        [2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1],
        [8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1],
        [9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1],
        [4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1],
        [3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1],
        [1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1],
        [4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1],
        [4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1],
        [9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1],
        [1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1],
        [5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1],
        [2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1],
        [9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1],
        [0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1],
        [2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1],
        [10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1],
        [4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1],
        [5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1],
        [5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1],
        [9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1],
        [0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1],
        [1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1],
        [10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1],
        [8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1],
        [2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1],
        [7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1],
        [9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1],
        [2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1],
        [11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1],
        [9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1],
        [5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1],
        [11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1],
        [11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1],
        [1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1],
        [9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1],
        [5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1],
        [2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1],
        [0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1],
        [5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1],
        [6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1],
        [0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1],
        [3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1],
        [6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1],
        [5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1],
        [1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1],
        [10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1],
        [6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1],
        [1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1],
        [8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1],
        [7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1],
        [3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1],
        [5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1],
        [0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1],
        [9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1],
        [8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1],
        [5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1],
        [0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1],
        [6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1],
        [10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1],
        [10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1],
        [8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1],
        [1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1],
        [3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1],
        [0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1],
        [10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1],
        [0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1],
        [3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1],
        [6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1],
        [9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1],
        [8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1],
        [3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1],
        [6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1],
        [0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1],
        [10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1],
        [10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1],
        [1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1],
        [2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1],
        [7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1],
        [7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1],
        [2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1],
        [1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1],
        [11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1],
        [8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1],
        [0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1],
        [7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1],
        [10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1],
        [2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1],
        [6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1],
        [7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1],
        [2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1],
        [1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1],
        [10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1],
        [10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1],
        [0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1],
        [7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1],
        [6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1],
        [8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1],
        [9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1],
        [6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1],
        [1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1],
        [4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1],
        [10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1],
        [8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1],
        [0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1],
        [1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1],
        [8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1],
        [10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1],
        [4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1],
        [10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1],
        [5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1],
        [11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1],
        [9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1],
        [6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1],
        [7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1],
        [3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1],
        [7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1],
        [9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1],
        [3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1],
        [6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1],
        [9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1],
        [1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1],
        [4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1],
        [7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1],
        [6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1],
        [3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1],
        [0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1],
        [6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1],
        [1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1],
        [0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1],
        [11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1],
        [6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1],
        [5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1],
        [9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1],
        [1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1],
        [1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1],
        [10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1],
        [0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1],
        [5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1],
        [10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1],
        [11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1],
        [0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1],
        [9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1],
        [7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1],
        [2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1],
        [8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1],
        [9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1],
        [9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1],
        [1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1],
        [9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1],
        [9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1],
        [5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1],
        [0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1],
        [10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1],
        [2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1],
        [0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1],
        [0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1],
        [9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1],
        [5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1],
        [3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1],
        [5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1],
        [8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1],
        [0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1],
        [9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1],
        [0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1],
        [1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1],
        [3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1],
        [4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1],
        [9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1],
        [11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1],
        [11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1],
        [2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1],
        [9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1],
        [3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1],
        [1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1],
        [4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1],
        [4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1],
        [0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1],
        [3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1],
        [3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1],
        [0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1],
        [9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1],
        [1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
        [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
]

class Polygoniser(object):
    def __init__(self, isolevel):
        self.isolevel = isolevel
        self.cache = dict()
        self.vertices = []

    def vertexinterp_cached(self, p1, p2, v1, v2):
        key1 = (tuple(p1), tuple(p2))
        key2 = (tuple(p2), tuple(p1))
        cached = self.cache.get(key1, None)
        if cached is not None:
            return cached
        else:
            vertex = vertexinterp(self.isolevel, p1, p2, v1, v2)
            #print(f"V[{p1}][{p2}] := {vertex}")
            n = len(self.vertices)
            self.vertices.append(vertex)
            self.cache[key1] = n
            self.cache[key2] = n
            return n

    def polygonise(self, cornervalues, x1, y1, z1, x2, y2, z2):

        #   Determine the index into the edge table which
        #   tells us which vertices are inside of the surface
        cubeindex = 0
        if cornervalues[0] < self.isolevel: cubeindex = cubeindex | 1
        if cornervalues[1] < self.isolevel: cubeindex = cubeindex | 2
        if cornervalues[2] < self.isolevel: cubeindex = cubeindex | 4
        if cornervalues[3] < self.isolevel: cubeindex = cubeindex | 8
        if cornervalues[4] < self.isolevel: cubeindex = cubeindex | 16
        if cornervalues[5] < self.isolevel: cubeindex = cubeindex | 32
        if cornervalues[6] < self.isolevel: cubeindex = cubeindex | 64
        if cornervalues[7] < self.isolevel: cubeindex = cubeindex | 128

        # Cube is entirely in/out of the surface
        if edgetable[cubeindex] == 0: return []

        vertlist=[[]]*12
        # Find the vertices where the surface intersects the cube
        if (edgetable[cubeindex] & 1):    vertlist[0]  = self.vertexinterp_cached([x1,y1,z1],[x1,y2,z1],cornervalues[0],cornervalues[1])
        if (edgetable[cubeindex] & 2):    vertlist[1]  = self.vertexinterp_cached([x1,y2,z1],[x2,y2,z1],cornervalues[1],cornervalues[2])
        if (edgetable[cubeindex] & 4):    vertlist[2]  = self.vertexinterp_cached([x2,y2,z1],[x2,y1,z1],cornervalues[2],cornervalues[3])
        if (edgetable[cubeindex] & 8):    vertlist[3]  = self.vertexinterp_cached([x2,y1,z1],[x1,y1,z1],cornervalues[3],cornervalues[0])
        if (edgetable[cubeindex] & 16):   vertlist[4]  = self.vertexinterp_cached([x1,y1,z2],[x1,y2,z2],cornervalues[4],cornervalues[5])
        if (edgetable[cubeindex] & 32):   vertlist[5]  = self.vertexinterp_cached([x1,y2,z2],[x2,y2,z2],cornervalues[5],cornervalues[6])
        if (edgetable[cubeindex] & 64):   vertlist[6]  = self.vertexinterp_cached([x2,y2,z2],[x2,y1,z2],cornervalues[6],cornervalues[7])
        if (edgetable[cubeindex] & 128):  vertlist[7]  = self.vertexinterp_cached([x2,y1,z2],[x1,y1,z2],cornervalues[7],cornervalues[4])
        if (edgetable[cubeindex] & 256):  vertlist[8]  = self.vertexinterp_cached([x1,y1,z1],[x1,y1,z2],cornervalues[0],cornervalues[4])
        if (edgetable[cubeindex] & 512):  vertlist[9]  = self.vertexinterp_cached([x1,y2,z1],[x1,y2,z2],cornervalues[1],cornervalues[5])
        if (edgetable[cubeindex] & 1024): vertlist[10] = self.vertexinterp_cached([x2,y2,z1],[x2,y2,z2],cornervalues[2],cornervalues[6])
        if (edgetable[cubeindex] & 2048): vertlist[11] = self.vertexinterp_cached([x2,y1,z1],[x2,y1,z2],cornervalues[3],cornervalues[7])

        #Create the triangle
        triangles = []
        #for (i=0;triTable[cubeindex][i]!=-1;i+=3) {
        i=0
        while tritable[cubeindex][i] != -1:
            triangles.append([vertlist[tritable[cubeindex][i  ]],
                                       vertlist[tritable[cubeindex][i+1]],
                                       vertlist[tritable[cubeindex][i+2]]])
            i+=3

        return triangles

def vertexinterp(isolevel,p1,p2,valp1,valp2):
   if (ABS(isolevel-valp1) < 0.00001):
      return p1
   if (ABS(isolevel-valp2) < 0.00001):
      return p2
   if (ABS(valp1-valp2) < 0.00001):
      return p1
   mu = (isolevel - valp1) / (valp2 - valp1);
   x = p1[0] + mu * (p2[0] - p1[0]);
   y = p1[1] + mu * (p2[1] - p1[1]);
   z = p1[2] + mu * (p2[2] - p1[2]);

   return x,y,z

def create_mesh_for(objname,verts,faces):
    me = bpy.data.meshes.new(objname)  # create a new mesh
    me.from_pydata(verts,[],faces)
    me.update()      # update the mesh with the new data


    bm = bmesh.new()
    bm.from_mesh(me)
    bmesh.ops.remove_doubles(bm, verts=bm.verts, dist=0.01)
    bm.to_mesh(me)

    ob = bpy.data.objects.new(objname,me) # create a new object
    ob.data = me          # link the mesh data to the object
    return ob

def creategeometry(verts):
    faces=[]
    faceoffset=0
    for ver in verts:
        if len(ver)==4:
            faces.append((faceoffset+0,faceoffset+1,faceoffset+2,faceoffset+3))
            faceoffset+=4
        elif len(ver)==3:
            faces.append((faceoffset+0,faceoffset+1,faceoffset+2))
            faceoffset+=3
    return list(chain.from_iterable(verts)),faces

def cornerloop(x,y,z):
    for cz in (0,z):
        for cy,cx in zip((0,y,y,0),(0,0,x,x)):
             yield cx,cy,cz

def isosurface_np(data, isolevel):
    triangles = []
    z_a = 0
    z_plane_a = data[:,:,z_a]
    sx, sy, sz = data.shape

    polygoniser = Polygoniser(isolevel)
    for z in range(sz-1):
        z2 = z+1
        z_plane_b = data[:,:,z2]
        for y in range(sy-1):
            y2 = y+1
            for x in range(sx-1):
                x2 = x+1
                cornervalues = [
                    z_plane_a[x][y],
                    z_plane_a[x][y+1],
                    z_plane_a[x+1][y+1],
                    z_plane_a[x+1][y],
                    z_plane_b[x][y],
                    z_plane_b[x][y+1],
                    z_plane_b[x+1][y+1],
                    z_plane_b[x+1][y],
                ]
                triangles.extend(polygoniser.polygonise(cornervalues, x,y,z, x2, y2, z2))
        z_plane_a = z_plane_b

    return np.array(polygoniser.vertices), triangles

Functions

def cornerloop(x, y, z)
Expand source code
def cornerloop(x,y,z):
    for cz in (0,z):
        for cy,cx in zip((0,y,y,0),(0,0,x,x)):
             yield cx,cy,cz
def create_mesh_for(objname, verts, faces)
Expand source code
def create_mesh_for(objname,verts,faces):
    me = bpy.data.meshes.new(objname)  # create a new mesh
    me.from_pydata(verts,[],faces)
    me.update()      # update the mesh with the new data


    bm = bmesh.new()
    bm.from_mesh(me)
    bmesh.ops.remove_doubles(bm, verts=bm.verts, dist=0.01)
    bm.to_mesh(me)

    ob = bpy.data.objects.new(objname,me) # create a new object
    ob.data = me          # link the mesh data to the object
    return ob
def creategeometry(verts)
Expand source code
def creategeometry(verts):
    faces=[]
    faceoffset=0
    for ver in verts:
        if len(ver)==4:
            faces.append((faceoffset+0,faceoffset+1,faceoffset+2,faceoffset+3))
            faceoffset+=4
        elif len(ver)==3:
            faces.append((faceoffset+0,faceoffset+1,faceoffset+2))
            faceoffset+=3
    return list(chain.from_iterable(verts)),faces
def isosurface_np(data, isolevel)
Expand source code
def isosurface_np(data, isolevel):
    triangles = []
    z_a = 0
    z_plane_a = data[:,:,z_a]
    sx, sy, sz = data.shape

    polygoniser = Polygoniser(isolevel)
    for z in range(sz-1):
        z2 = z+1
        z_plane_b = data[:,:,z2]
        for y in range(sy-1):
            y2 = y+1
            for x in range(sx-1):
                x2 = x+1
                cornervalues = [
                    z_plane_a[x][y],
                    z_plane_a[x][y+1],
                    z_plane_a[x+1][y+1],
                    z_plane_a[x+1][y],
                    z_plane_b[x][y],
                    z_plane_b[x][y+1],
                    z_plane_b[x+1][y+1],
                    z_plane_b[x+1][y],
                ]
                triangles.extend(polygoniser.polygonise(cornervalues, x,y,z, x2, y2, z2))
        z_plane_a = z_plane_b

    return np.array(polygoniser.vertices), triangles
def vertexinterp(isolevel, p1, p2, valp1, valp2)
Expand source code
def vertexinterp(isolevel,p1,p2,valp1,valp2):
   if (ABS(isolevel-valp1) < 0.00001):
      return p1
   if (ABS(isolevel-valp2) < 0.00001):
      return p2
   if (ABS(valp1-valp2) < 0.00001):
      return p1
   mu = (isolevel - valp1) / (valp2 - valp1);
   x = p1[0] + mu * (p2[0] - p1[0]);
   y = p1[1] + mu * (p2[1] - p1[1]);
   z = p1[2] + mu * (p2[2] - p1[2]);

   return x,y,z

Classes

class Polygoniser (isolevel)
Expand source code
class Polygoniser(object):
    def __init__(self, isolevel):
        self.isolevel = isolevel
        self.cache = dict()
        self.vertices = []

    def vertexinterp_cached(self, p1, p2, v1, v2):
        key1 = (tuple(p1), tuple(p2))
        key2 = (tuple(p2), tuple(p1))
        cached = self.cache.get(key1, None)
        if cached is not None:
            return cached
        else:
            vertex = vertexinterp(self.isolevel, p1, p2, v1, v2)
            #print(f"V[{p1}][{p2}] := {vertex}")
            n = len(self.vertices)
            self.vertices.append(vertex)
            self.cache[key1] = n
            self.cache[key2] = n
            return n

    def polygonise(self, cornervalues, x1, y1, z1, x2, y2, z2):

        #   Determine the index into the edge table which
        #   tells us which vertices are inside of the surface
        cubeindex = 0
        if cornervalues[0] < self.isolevel: cubeindex = cubeindex | 1
        if cornervalues[1] < self.isolevel: cubeindex = cubeindex | 2
        if cornervalues[2] < self.isolevel: cubeindex = cubeindex | 4
        if cornervalues[3] < self.isolevel: cubeindex = cubeindex | 8
        if cornervalues[4] < self.isolevel: cubeindex = cubeindex | 16
        if cornervalues[5] < self.isolevel: cubeindex = cubeindex | 32
        if cornervalues[6] < self.isolevel: cubeindex = cubeindex | 64
        if cornervalues[7] < self.isolevel: cubeindex = cubeindex | 128

        # Cube is entirely in/out of the surface
        if edgetable[cubeindex] == 0: return []

        vertlist=[[]]*12
        # Find the vertices where the surface intersects the cube
        if (edgetable[cubeindex] & 1):    vertlist[0]  = self.vertexinterp_cached([x1,y1,z1],[x1,y2,z1],cornervalues[0],cornervalues[1])
        if (edgetable[cubeindex] & 2):    vertlist[1]  = self.vertexinterp_cached([x1,y2,z1],[x2,y2,z1],cornervalues[1],cornervalues[2])
        if (edgetable[cubeindex] & 4):    vertlist[2]  = self.vertexinterp_cached([x2,y2,z1],[x2,y1,z1],cornervalues[2],cornervalues[3])
        if (edgetable[cubeindex] & 8):    vertlist[3]  = self.vertexinterp_cached([x2,y1,z1],[x1,y1,z1],cornervalues[3],cornervalues[0])
        if (edgetable[cubeindex] & 16):   vertlist[4]  = self.vertexinterp_cached([x1,y1,z2],[x1,y2,z2],cornervalues[4],cornervalues[5])
        if (edgetable[cubeindex] & 32):   vertlist[5]  = self.vertexinterp_cached([x1,y2,z2],[x2,y2,z2],cornervalues[5],cornervalues[6])
        if (edgetable[cubeindex] & 64):   vertlist[6]  = self.vertexinterp_cached([x2,y2,z2],[x2,y1,z2],cornervalues[6],cornervalues[7])
        if (edgetable[cubeindex] & 128):  vertlist[7]  = self.vertexinterp_cached([x2,y1,z2],[x1,y1,z2],cornervalues[7],cornervalues[4])
        if (edgetable[cubeindex] & 256):  vertlist[8]  = self.vertexinterp_cached([x1,y1,z1],[x1,y1,z2],cornervalues[0],cornervalues[4])
        if (edgetable[cubeindex] & 512):  vertlist[9]  = self.vertexinterp_cached([x1,y2,z1],[x1,y2,z2],cornervalues[1],cornervalues[5])
        if (edgetable[cubeindex] & 1024): vertlist[10] = self.vertexinterp_cached([x2,y2,z1],[x2,y2,z2],cornervalues[2],cornervalues[6])
        if (edgetable[cubeindex] & 2048): vertlist[11] = self.vertexinterp_cached([x2,y1,z1],[x2,y1,z2],cornervalues[3],cornervalues[7])

        #Create the triangle
        triangles = []
        #for (i=0;triTable[cubeindex][i]!=-1;i+=3) {
        i=0
        while tritable[cubeindex][i] != -1:
            triangles.append([vertlist[tritable[cubeindex][i  ]],
                                       vertlist[tritable[cubeindex][i+1]],
                                       vertlist[tritable[cubeindex][i+2]]])
            i+=3

        return triangles

Methods

def polygonise(self, cornervalues, x1, y1, z1, x2, y2, z2)
Expand source code
def polygonise(self, cornervalues, x1, y1, z1, x2, y2, z2):

    #   Determine the index into the edge table which
    #   tells us which vertices are inside of the surface
    cubeindex = 0
    if cornervalues[0] < self.isolevel: cubeindex = cubeindex | 1
    if cornervalues[1] < self.isolevel: cubeindex = cubeindex | 2
    if cornervalues[2] < self.isolevel: cubeindex = cubeindex | 4
    if cornervalues[3] < self.isolevel: cubeindex = cubeindex | 8
    if cornervalues[4] < self.isolevel: cubeindex = cubeindex | 16
    if cornervalues[5] < self.isolevel: cubeindex = cubeindex | 32
    if cornervalues[6] < self.isolevel: cubeindex = cubeindex | 64
    if cornervalues[7] < self.isolevel: cubeindex = cubeindex | 128

    # Cube is entirely in/out of the surface
    if edgetable[cubeindex] == 0: return []

    vertlist=[[]]*12
    # Find the vertices where the surface intersects the cube
    if (edgetable[cubeindex] & 1):    vertlist[0]  = self.vertexinterp_cached([x1,y1,z1],[x1,y2,z1],cornervalues[0],cornervalues[1])
    if (edgetable[cubeindex] & 2):    vertlist[1]  = self.vertexinterp_cached([x1,y2,z1],[x2,y2,z1],cornervalues[1],cornervalues[2])
    if (edgetable[cubeindex] & 4):    vertlist[2]  = self.vertexinterp_cached([x2,y2,z1],[x2,y1,z1],cornervalues[2],cornervalues[3])
    if (edgetable[cubeindex] & 8):    vertlist[3]  = self.vertexinterp_cached([x2,y1,z1],[x1,y1,z1],cornervalues[3],cornervalues[0])
    if (edgetable[cubeindex] & 16):   vertlist[4]  = self.vertexinterp_cached([x1,y1,z2],[x1,y2,z2],cornervalues[4],cornervalues[5])
    if (edgetable[cubeindex] & 32):   vertlist[5]  = self.vertexinterp_cached([x1,y2,z2],[x2,y2,z2],cornervalues[5],cornervalues[6])
    if (edgetable[cubeindex] & 64):   vertlist[6]  = self.vertexinterp_cached([x2,y2,z2],[x2,y1,z2],cornervalues[6],cornervalues[7])
    if (edgetable[cubeindex] & 128):  vertlist[7]  = self.vertexinterp_cached([x2,y1,z2],[x1,y1,z2],cornervalues[7],cornervalues[4])
    if (edgetable[cubeindex] & 256):  vertlist[8]  = self.vertexinterp_cached([x1,y1,z1],[x1,y1,z2],cornervalues[0],cornervalues[4])
    if (edgetable[cubeindex] & 512):  vertlist[9]  = self.vertexinterp_cached([x1,y2,z1],[x1,y2,z2],cornervalues[1],cornervalues[5])
    if (edgetable[cubeindex] & 1024): vertlist[10] = self.vertexinterp_cached([x2,y2,z1],[x2,y2,z2],cornervalues[2],cornervalues[6])
    if (edgetable[cubeindex] & 2048): vertlist[11] = self.vertexinterp_cached([x2,y1,z1],[x2,y1,z2],cornervalues[3],cornervalues[7])

    #Create the triangle
    triangles = []
    #for (i=0;triTable[cubeindex][i]!=-1;i+=3) {
    i=0
    while tritable[cubeindex][i] != -1:
        triangles.append([vertlist[tritable[cubeindex][i  ]],
                                   vertlist[tritable[cubeindex][i+1]],
                                   vertlist[tritable[cubeindex][i+2]]])
        i+=3

    return triangles
def vertexinterp_cached(self, p1, p2, v1, v2)
Expand source code
def vertexinterp_cached(self, p1, p2, v1, v2):
    key1 = (tuple(p1), tuple(p2))
    key2 = (tuple(p2), tuple(p1))
    cached = self.cache.get(key1, None)
    if cached is not None:
        return cached
    else:
        vertex = vertexinterp(self.isolevel, p1, p2, v1, v2)
        #print(f"V[{p1}][{p2}] := {vertex}")
        n = len(self.vertices)
        self.vertices.append(vertex)
        self.cache[key1] = n
        self.cache[key2] = n
        return n