Module sverchok.utils.marching_cubes
Pure Python implementation of marching cubes algorithm Adapted from https://github.com/mutantbob/blender-marching-cubes/blob/master/marching-cube.py
Expand source code
"""
Pure Python implementation of marching cubes algorithm
Adapted from https://github.com/mutantbob/blender-marching-cubes/blob/master/marching-cube.py
"""
"""
z
^
|
4
4-----5
/| / 5
7-----6 |
| |8 | |9
| | 0 |10
| 0---|-1 ->y
|/ 11|/ 1
3-----2
/ 2
<
x
This Code is based on the example from
http://paulbourke.net/geometry/polygonise/
by Paul Bourke,
and modified by Tom Sapien to work with python within blender.
Subsequent optimizations by Robert Forsman.
See also https://github.com/Pyroevil/CubeSurfer for a cython derivative by Jean-Francois Gallant
This code is under the terms of GPL
"""
__author__ = "Tom Sapiens and Robert Forsman"
__copyright__ = "Copyright 2011, Tom Sapiens"
__credits__ = ["Tom Sapiens", "Paul Bourke", "Robert Forsman"]
__license__ = "GPL"
__version__ = "0.1"
__maintainer__ = "Robert Forsman"
__email__ = "blender@thoth.purplefrog.com"
__status__ = "alpha"
import time
import math
from math import sqrt,sin,cos,tan
import mathutils
import bpy
from itertools import chain
import bmesh
import numpy as np
vec=mathutils.Vector
ABS=abs
edgetable=(0x0 , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c,
0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac,
0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c,
0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc,
0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c,
0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc ,
0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0,
0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230,
0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0)
tritable = [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1],
[3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1],
[3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1],
[3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1],
[9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1],
[9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1],
[2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1],
[8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1],
[9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1],
[4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1],
[3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1],
[1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1],
[4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1],
[4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1],
[5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1],
[2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1],
[9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1],
[0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1],
[2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1],
[10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1],
[4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1],
[5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1],
[5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1],
[9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1],
[0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1],
[1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1],
[10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1],
[8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1],
[2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1],
[7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1],
[2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1],
[11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1],
[5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1],
[11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1],
[11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1],
[1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1],
[9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1],
[5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1],
[2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1],
[5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1],
[6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1],
[3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1],
[6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1],
[5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1],
[1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1],
[10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1],
[6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1],
[8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1],
[7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1],
[3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1],
[5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1],
[0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1],
[9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1],
[8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1],
[5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1],
[0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1],
[6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1],
[10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1],
[10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1],
[8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1],
[1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1],
[0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1],
[10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1],
[3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1],
[6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1],
[9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1],
[8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1],
[3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1],
[6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1],
[0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1],
[10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1],
[10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1],
[2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1],
[7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1],
[7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1],
[2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1],
[1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1],
[11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1],
[8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1],
[0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1],
[7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1],
[10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1],
[2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1],
[6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1],
[7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1],
[2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1],
[1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1],
[10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1],
[10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1],
[0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1],
[7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1],
[6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1],
[8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1],
[9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1],
[6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1],
[4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1],
[10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1],
[8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1],
[0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1],
[1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1],
[8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1],
[10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1],
[4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1],
[10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1],
[5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1],
[11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1],
[9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1],
[6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1],
[7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1],
[3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1],
[7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1],
[9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1],
[3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1],
[6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1],
[9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1],
[1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1],
[4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1],
[7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1],
[6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1],
[3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1],
[0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1],
[6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1],
[0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1],
[11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1],
[6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1],
[5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1],
[9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1],
[1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1],
[1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1],
[10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1],
[0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1],
[5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1],
[10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1],
[11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1],
[9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1],
[7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1],
[2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1],
[8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1],
[9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1],
[9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1],
[1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1],
[9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1],
[9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1],
[5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1],
[0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1],
[10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1],
[2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1],
[0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1],
[0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1],
[9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1],
[5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1],
[3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1],
[5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1],
[8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1],
[0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1],
[9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1],
[0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1],
[1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1],
[3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1],
[4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1],
[9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1],
[11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1],
[11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1],
[2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1],
[9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1],
[3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1],
[1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1],
[4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1],
[4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1],
[0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1],
[3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1],
[0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1],
[9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1],
[1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]
]
class Polygoniser(object):
def __init__(self, isolevel):
self.isolevel = isolevel
self.cache = dict()
self.vertices = []
def vertexinterp_cached(self, p1, p2, v1, v2):
key1 = (tuple(p1), tuple(p2))
key2 = (tuple(p2), tuple(p1))
cached = self.cache.get(key1, None)
if cached is not None:
return cached
else:
vertex = vertexinterp(self.isolevel, p1, p2, v1, v2)
#print(f"V[{p1}][{p2}] := {vertex}")
n = len(self.vertices)
self.vertices.append(vertex)
self.cache[key1] = n
self.cache[key2] = n
return n
def polygonise(self, cornervalues, x1, y1, z1, x2, y2, z2):
# Determine the index into the edge table which
# tells us which vertices are inside of the surface
cubeindex = 0
if cornervalues[0] < self.isolevel: cubeindex = cubeindex | 1
if cornervalues[1] < self.isolevel: cubeindex = cubeindex | 2
if cornervalues[2] < self.isolevel: cubeindex = cubeindex | 4
if cornervalues[3] < self.isolevel: cubeindex = cubeindex | 8
if cornervalues[4] < self.isolevel: cubeindex = cubeindex | 16
if cornervalues[5] < self.isolevel: cubeindex = cubeindex | 32
if cornervalues[6] < self.isolevel: cubeindex = cubeindex | 64
if cornervalues[7] < self.isolevel: cubeindex = cubeindex | 128
# Cube is entirely in/out of the surface
if edgetable[cubeindex] == 0: return []
vertlist=[[]]*12
# Find the vertices where the surface intersects the cube
if (edgetable[cubeindex] & 1): vertlist[0] = self.vertexinterp_cached([x1,y1,z1],[x1,y2,z1],cornervalues[0],cornervalues[1])
if (edgetable[cubeindex] & 2): vertlist[1] = self.vertexinterp_cached([x1,y2,z1],[x2,y2,z1],cornervalues[1],cornervalues[2])
if (edgetable[cubeindex] & 4): vertlist[2] = self.vertexinterp_cached([x2,y2,z1],[x2,y1,z1],cornervalues[2],cornervalues[3])
if (edgetable[cubeindex] & 8): vertlist[3] = self.vertexinterp_cached([x2,y1,z1],[x1,y1,z1],cornervalues[3],cornervalues[0])
if (edgetable[cubeindex] & 16): vertlist[4] = self.vertexinterp_cached([x1,y1,z2],[x1,y2,z2],cornervalues[4],cornervalues[5])
if (edgetable[cubeindex] & 32): vertlist[5] = self.vertexinterp_cached([x1,y2,z2],[x2,y2,z2],cornervalues[5],cornervalues[6])
if (edgetable[cubeindex] & 64): vertlist[6] = self.vertexinterp_cached([x2,y2,z2],[x2,y1,z2],cornervalues[6],cornervalues[7])
if (edgetable[cubeindex] & 128): vertlist[7] = self.vertexinterp_cached([x2,y1,z2],[x1,y1,z2],cornervalues[7],cornervalues[4])
if (edgetable[cubeindex] & 256): vertlist[8] = self.vertexinterp_cached([x1,y1,z1],[x1,y1,z2],cornervalues[0],cornervalues[4])
if (edgetable[cubeindex] & 512): vertlist[9] = self.vertexinterp_cached([x1,y2,z1],[x1,y2,z2],cornervalues[1],cornervalues[5])
if (edgetable[cubeindex] & 1024): vertlist[10] = self.vertexinterp_cached([x2,y2,z1],[x2,y2,z2],cornervalues[2],cornervalues[6])
if (edgetable[cubeindex] & 2048): vertlist[11] = self.vertexinterp_cached([x2,y1,z1],[x2,y1,z2],cornervalues[3],cornervalues[7])
#Create the triangle
triangles = []
#for (i=0;triTable[cubeindex][i]!=-1;i+=3) {
i=0
while tritable[cubeindex][i] != -1:
triangles.append([vertlist[tritable[cubeindex][i ]],
vertlist[tritable[cubeindex][i+1]],
vertlist[tritable[cubeindex][i+2]]])
i+=3
return triangles
def vertexinterp(isolevel,p1,p2,valp1,valp2):
if (ABS(isolevel-valp1) < 0.00001):
return p1
if (ABS(isolevel-valp2) < 0.00001):
return p2
if (ABS(valp1-valp2) < 0.00001):
return p1
mu = (isolevel - valp1) / (valp2 - valp1);
x = p1[0] + mu * (p2[0] - p1[0]);
y = p1[1] + mu * (p2[1] - p1[1]);
z = p1[2] + mu * (p2[2] - p1[2]);
return x,y,z
def create_mesh_for(objname,verts,faces):
me = bpy.data.meshes.new(objname) # create a new mesh
me.from_pydata(verts,[],faces)
me.update() # update the mesh with the new data
bm = bmesh.new()
bm.from_mesh(me)
bmesh.ops.remove_doubles(bm, verts=bm.verts, dist=0.01)
bm.to_mesh(me)
ob = bpy.data.objects.new(objname,me) # create a new object
ob.data = me # link the mesh data to the object
return ob
def creategeometry(verts):
faces=[]
faceoffset=0
for ver in verts:
if len(ver)==4:
faces.append((faceoffset+0,faceoffset+1,faceoffset+2,faceoffset+3))
faceoffset+=4
elif len(ver)==3:
faces.append((faceoffset+0,faceoffset+1,faceoffset+2))
faceoffset+=3
return list(chain.from_iterable(verts)),faces
def cornerloop(x,y,z):
for cz in (0,z):
for cy,cx in zip((0,y,y,0),(0,0,x,x)):
yield cx,cy,cz
def isosurface_np(data, isolevel):
triangles = []
z_a = 0
z_plane_a = data[:,:,z_a]
sx, sy, sz = data.shape
polygoniser = Polygoniser(isolevel)
for z in range(sz-1):
z2 = z+1
z_plane_b = data[:,:,z2]
for y in range(sy-1):
y2 = y+1
for x in range(sx-1):
x2 = x+1
cornervalues = [
z_plane_a[x][y],
z_plane_a[x][y+1],
z_plane_a[x+1][y+1],
z_plane_a[x+1][y],
z_plane_b[x][y],
z_plane_b[x][y+1],
z_plane_b[x+1][y+1],
z_plane_b[x+1][y],
]
triangles.extend(polygoniser.polygonise(cornervalues, x,y,z, x2, y2, z2))
z_plane_a = z_plane_b
return np.array(polygoniser.vertices), triangles
Functions
def cornerloop(x, y, z)
-
Expand source code
def cornerloop(x,y,z): for cz in (0,z): for cy,cx in zip((0,y,y,0),(0,0,x,x)): yield cx,cy,cz
def create_mesh_for(objname, verts, faces)
-
Expand source code
def create_mesh_for(objname,verts,faces): me = bpy.data.meshes.new(objname) # create a new mesh me.from_pydata(verts,[],faces) me.update() # update the mesh with the new data bm = bmesh.new() bm.from_mesh(me) bmesh.ops.remove_doubles(bm, verts=bm.verts, dist=0.01) bm.to_mesh(me) ob = bpy.data.objects.new(objname,me) # create a new object ob.data = me # link the mesh data to the object return ob
def creategeometry(verts)
-
Expand source code
def creategeometry(verts): faces=[] faceoffset=0 for ver in verts: if len(ver)==4: faces.append((faceoffset+0,faceoffset+1,faceoffset+2,faceoffset+3)) faceoffset+=4 elif len(ver)==3: faces.append((faceoffset+0,faceoffset+1,faceoffset+2)) faceoffset+=3 return list(chain.from_iterable(verts)),faces
def isosurface_np(data, isolevel)
-
Expand source code
def isosurface_np(data, isolevel): triangles = [] z_a = 0 z_plane_a = data[:,:,z_a] sx, sy, sz = data.shape polygoniser = Polygoniser(isolevel) for z in range(sz-1): z2 = z+1 z_plane_b = data[:,:,z2] for y in range(sy-1): y2 = y+1 for x in range(sx-1): x2 = x+1 cornervalues = [ z_plane_a[x][y], z_plane_a[x][y+1], z_plane_a[x+1][y+1], z_plane_a[x+1][y], z_plane_b[x][y], z_plane_b[x][y+1], z_plane_b[x+1][y+1], z_plane_b[x+1][y], ] triangles.extend(polygoniser.polygonise(cornervalues, x,y,z, x2, y2, z2)) z_plane_a = z_plane_b return np.array(polygoniser.vertices), triangles
def vertexinterp(isolevel, p1, p2, valp1, valp2)
-
Expand source code
def vertexinterp(isolevel,p1,p2,valp1,valp2): if (ABS(isolevel-valp1) < 0.00001): return p1 if (ABS(isolevel-valp2) < 0.00001): return p2 if (ABS(valp1-valp2) < 0.00001): return p1 mu = (isolevel - valp1) / (valp2 - valp1); x = p1[0] + mu * (p2[0] - p1[0]); y = p1[1] + mu * (p2[1] - p1[1]); z = p1[2] + mu * (p2[2] - p1[2]); return x,y,z
Classes
class Polygoniser (isolevel)
-
Expand source code
class Polygoniser(object): def __init__(self, isolevel): self.isolevel = isolevel self.cache = dict() self.vertices = [] def vertexinterp_cached(self, p1, p2, v1, v2): key1 = (tuple(p1), tuple(p2)) key2 = (tuple(p2), tuple(p1)) cached = self.cache.get(key1, None) if cached is not None: return cached else: vertex = vertexinterp(self.isolevel, p1, p2, v1, v2) #print(f"V[{p1}][{p2}] := {vertex}") n = len(self.vertices) self.vertices.append(vertex) self.cache[key1] = n self.cache[key2] = n return n def polygonise(self, cornervalues, x1, y1, z1, x2, y2, z2): # Determine the index into the edge table which # tells us which vertices are inside of the surface cubeindex = 0 if cornervalues[0] < self.isolevel: cubeindex = cubeindex | 1 if cornervalues[1] < self.isolevel: cubeindex = cubeindex | 2 if cornervalues[2] < self.isolevel: cubeindex = cubeindex | 4 if cornervalues[3] < self.isolevel: cubeindex = cubeindex | 8 if cornervalues[4] < self.isolevel: cubeindex = cubeindex | 16 if cornervalues[5] < self.isolevel: cubeindex = cubeindex | 32 if cornervalues[6] < self.isolevel: cubeindex = cubeindex | 64 if cornervalues[7] < self.isolevel: cubeindex = cubeindex | 128 # Cube is entirely in/out of the surface if edgetable[cubeindex] == 0: return [] vertlist=[[]]*12 # Find the vertices where the surface intersects the cube if (edgetable[cubeindex] & 1): vertlist[0] = self.vertexinterp_cached([x1,y1,z1],[x1,y2,z1],cornervalues[0],cornervalues[1]) if (edgetable[cubeindex] & 2): vertlist[1] = self.vertexinterp_cached([x1,y2,z1],[x2,y2,z1],cornervalues[1],cornervalues[2]) if (edgetable[cubeindex] & 4): vertlist[2] = self.vertexinterp_cached([x2,y2,z1],[x2,y1,z1],cornervalues[2],cornervalues[3]) if (edgetable[cubeindex] & 8): vertlist[3] = self.vertexinterp_cached([x2,y1,z1],[x1,y1,z1],cornervalues[3],cornervalues[0]) if (edgetable[cubeindex] & 16): vertlist[4] = self.vertexinterp_cached([x1,y1,z2],[x1,y2,z2],cornervalues[4],cornervalues[5]) if (edgetable[cubeindex] & 32): vertlist[5] = self.vertexinterp_cached([x1,y2,z2],[x2,y2,z2],cornervalues[5],cornervalues[6]) if (edgetable[cubeindex] & 64): vertlist[6] = self.vertexinterp_cached([x2,y2,z2],[x2,y1,z2],cornervalues[6],cornervalues[7]) if (edgetable[cubeindex] & 128): vertlist[7] = self.vertexinterp_cached([x2,y1,z2],[x1,y1,z2],cornervalues[7],cornervalues[4]) if (edgetable[cubeindex] & 256): vertlist[8] = self.vertexinterp_cached([x1,y1,z1],[x1,y1,z2],cornervalues[0],cornervalues[4]) if (edgetable[cubeindex] & 512): vertlist[9] = self.vertexinterp_cached([x1,y2,z1],[x1,y2,z2],cornervalues[1],cornervalues[5]) if (edgetable[cubeindex] & 1024): vertlist[10] = self.vertexinterp_cached([x2,y2,z1],[x2,y2,z2],cornervalues[2],cornervalues[6]) if (edgetable[cubeindex] & 2048): vertlist[11] = self.vertexinterp_cached([x2,y1,z1],[x2,y1,z2],cornervalues[3],cornervalues[7]) #Create the triangle triangles = [] #for (i=0;triTable[cubeindex][i]!=-1;i+=3) { i=0 while tritable[cubeindex][i] != -1: triangles.append([vertlist[tritable[cubeindex][i ]], vertlist[tritable[cubeindex][i+1]], vertlist[tritable[cubeindex][i+2]]]) i+=3 return triangles
Methods
def polygonise(self, cornervalues, x1, y1, z1, x2, y2, z2)
-
Expand source code
def polygonise(self, cornervalues, x1, y1, z1, x2, y2, z2): # Determine the index into the edge table which # tells us which vertices are inside of the surface cubeindex = 0 if cornervalues[0] < self.isolevel: cubeindex = cubeindex | 1 if cornervalues[1] < self.isolevel: cubeindex = cubeindex | 2 if cornervalues[2] < self.isolevel: cubeindex = cubeindex | 4 if cornervalues[3] < self.isolevel: cubeindex = cubeindex | 8 if cornervalues[4] < self.isolevel: cubeindex = cubeindex | 16 if cornervalues[5] < self.isolevel: cubeindex = cubeindex | 32 if cornervalues[6] < self.isolevel: cubeindex = cubeindex | 64 if cornervalues[7] < self.isolevel: cubeindex = cubeindex | 128 # Cube is entirely in/out of the surface if edgetable[cubeindex] == 0: return [] vertlist=[[]]*12 # Find the vertices where the surface intersects the cube if (edgetable[cubeindex] & 1): vertlist[0] = self.vertexinterp_cached([x1,y1,z1],[x1,y2,z1],cornervalues[0],cornervalues[1]) if (edgetable[cubeindex] & 2): vertlist[1] = self.vertexinterp_cached([x1,y2,z1],[x2,y2,z1],cornervalues[1],cornervalues[2]) if (edgetable[cubeindex] & 4): vertlist[2] = self.vertexinterp_cached([x2,y2,z1],[x2,y1,z1],cornervalues[2],cornervalues[3]) if (edgetable[cubeindex] & 8): vertlist[3] = self.vertexinterp_cached([x2,y1,z1],[x1,y1,z1],cornervalues[3],cornervalues[0]) if (edgetable[cubeindex] & 16): vertlist[4] = self.vertexinterp_cached([x1,y1,z2],[x1,y2,z2],cornervalues[4],cornervalues[5]) if (edgetable[cubeindex] & 32): vertlist[5] = self.vertexinterp_cached([x1,y2,z2],[x2,y2,z2],cornervalues[5],cornervalues[6]) if (edgetable[cubeindex] & 64): vertlist[6] = self.vertexinterp_cached([x2,y2,z2],[x2,y1,z2],cornervalues[6],cornervalues[7]) if (edgetable[cubeindex] & 128): vertlist[7] = self.vertexinterp_cached([x2,y1,z2],[x1,y1,z2],cornervalues[7],cornervalues[4]) if (edgetable[cubeindex] & 256): vertlist[8] = self.vertexinterp_cached([x1,y1,z1],[x1,y1,z2],cornervalues[0],cornervalues[4]) if (edgetable[cubeindex] & 512): vertlist[9] = self.vertexinterp_cached([x1,y2,z1],[x1,y2,z2],cornervalues[1],cornervalues[5]) if (edgetable[cubeindex] & 1024): vertlist[10] = self.vertexinterp_cached([x2,y2,z1],[x2,y2,z2],cornervalues[2],cornervalues[6]) if (edgetable[cubeindex] & 2048): vertlist[11] = self.vertexinterp_cached([x2,y1,z1],[x2,y1,z2],cornervalues[3],cornervalues[7]) #Create the triangle triangles = [] #for (i=0;triTable[cubeindex][i]!=-1;i+=3) { i=0 while tritable[cubeindex][i] != -1: triangles.append([vertlist[tritable[cubeindex][i ]], vertlist[tritable[cubeindex][i+1]], vertlist[tritable[cubeindex][i+2]]]) i+=3 return triangles
def vertexinterp_cached(self, p1, p2, v1, v2)
-
Expand source code
def vertexinterp_cached(self, p1, p2, v1, v2): key1 = (tuple(p1), tuple(p2)) key2 = (tuple(p2), tuple(p1)) cached = self.cache.get(key1, None) if cached is not None: return cached else: vertex = vertexinterp(self.isolevel, p1, p2, v1, v2) #print(f"V[{p1}][{p2}] := {vertex}") n = len(self.vertices) self.vertices.append(vertex) self.cache[key1] = n self.cache[key2] = n return n