Module sverchok.utils.cad_module_class
Expand source code
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
import bmesh
from mathutils import Vector
from mathutils.geometry import intersect_line_line as LineIntersect
from mathutils.geometry import intersect_point_line as PtLineIntersect
class CAD_ops():
def __init__(self, epsilon=1.0e-5, threshold=0.0001):
self.VTX_PRECISION = epsilon
self.VTX_DOUBLES_THRSHLD = threshold
def point_on_edge(self, p, edge):
'''
> p: vector
> edge: tuple of 2 vectors
< returns: True / False if a point happens to lie on an edge
'''
pt, _percent = PtLineIntersect(p, *edge)
on_line = (pt-p).length < self.VTX_PRECISION
return on_line and (0.0 <= _percent <= 1.0)
def line_from_edge_intersect(self, edge1, edge2):
'''
> takes 2 tuples, each tuple contains 2 vectors
- prepares input for sending to intersect_line_line
< returns output of intersect_line_line
'''
[p1, p2], [p3, p4] = edge1, edge2
return LineIntersect(p1, p2, p3, p4)
def get_intersection(self, edge1, edge2):
'''
> takes 2 tuples, each tuple contains 2 vectors
< returns the point halfway on line. See intersect_line_line
'''
line = self.line_from_edge_intersect(edge1, edge2)
return (line[0] + line[1]) / 2
def get_intersection_from_idxs(self, bm, idx1, idx2):
'''
> takes reference to bm and 2 indices
< returns intersection or None
'''
p1, p2 = self.coords_tuple_from_edge_idx(bm, idx1)
p3, p4 = self.coords_tuple_from_edge_idx(bm, idx2)
a, b = LineIntersect(p1, p2, p3, p4)
if (a-b).length < self.VTX_PRECISION:
return a
def test_coplanar(self, edge1, edge2):
'''
the line that describes the shortest line between the two edges
would be short if the lines intersect mathematically. If this
line is longer than the VTX_PRECISION then they are either
coplanar or parallel.
'''
line = self.line_from_edge_intersect(edge1, edge2)
return (line[0]-line[1]).length < self.VTX_PRECISION
def is_coplanar(self, points):
"""
points: list of 4 mathutils.Vectors
returns: True if all 4 points lie on the same plane
"""
# Simple case: all points are in XOY plane
if all([abs(p[2]) < self.VTX_PRECISION for p in points]):
return True
# More complex general case
# Test if triple vector product of these three vectors
# is zero
v1 = points[1] - points[0]
v2 = points[2] - points[0]
v3 = points[3] - points[0]
cross = v1.cross(v2)
dot = cross.dot(v3)
return abs(dot) < self.VTX_PRECISION
def closest_idx(self, pt, e):
'''
> pt: vector
> e: bmesh edge
< returns: returns index of vertex closest to pt.
if both points in e are equally far from pt, then v1 is returned.
'''
if isinstance(e, bmesh.types.BMEdge):
ev = e.verts
v1 = ev[0].co
v2 = ev[1].co
distance_test = (v1 - pt).length <= (v2 - pt).length
return ev[0].index if distance_test else ev[1].index
print("received {0}, check expected input in docstring ".format(e))
def closest_vector(self, pt, e):
'''
> pt: vector
> e: 2 vector tuple
< returns:
pt, 2 vector tuple: returns closest vector to pt
if both points in e are equally far from pt, then v1 is returned.
'''
if isinstance(e, tuple) and all([isinstance(co, Vector) for co in e]):
v1, v2 = e
distance_test = (v1 - pt).length <= (v2 - pt).length
return v1 if distance_test else v2
print("received {0}, check expected input in docstring ".format(e))
def coords_tuple_from_edge_idx(self, bm, idx):
''' bm is a bmesh representation '''
return tuple(v.co for v in bm.edges[idx].verts)
def vectors_from_indices(self, bm, raw_vert_indices):
''' bm is a bmesh representation '''
return [bm.verts[i].co for i in raw_vert_indices]
def vertex_indices_from_edges_tuple(self, bm, edge_tuple):
'''
> bm: is a bmesh representation
> edge_tuple: contains two edge indices.
< returns the vertex indices of edge_tuple
'''
e1, e2 = edge_tuple
bm_e1, bm_e2 = bm.edges[e1], bm.edges[e2]
return [bm_e1.verts[0].index, bm_e1.verts[1].index,
bm_e2.verts[0].index, bm_e2.verts[1].index]
def vectors_from_edges_tuple(self, bm, edge_tuple):
'''
> bm: is a bmesh representation
> edge_tuple: contains two edge indices.
< returns the vertex coordinates of edge_tuple
'''
e1, e2 = edge_tuple
bm_e1, bm_e2 = bm.edges[e1], bm.edges[e2]
return [bm_e1.verts[0].co, bm_e1.verts[1].co,
bm_e2.verts[0].co, bm_e2.verts[1].co]
def num_edges_point_lies_on(self, pt, edges):
''' returns the number of edges that a point lies on. '''
res = [self.point_on_edge(pt, edge) for edge in [edges[:2], edges[2:]]]
return len([i for i in res if i])
def find_intersecting_edges(self, bm, pt, idx1, idx2):
'''
> pt: Vector
> idx1, ix2: edge indices,
< returns the list of edge indices where pt is on those edges
'''
idxs = [idx1, idx2]
edges = [self.coords_tuple_from_edge_idx(bm, idx) for idx in idxs]
return [idx for edge, idx in zip(edges, idxs) if self.point_on_edge(pt, edge)]
def duplicates(self, indices):
return len(set(indices)) < 4
def vert_idxs_from_edge_idx(self, bm, idx):
edge = bm.edges[idx]
return edge.verts[0].index, edge.verts[1].index
Classes
class CAD_ops (epsilon=1e-05, threshold=0.0001)
-
Expand source code
class CAD_ops(): def __init__(self, epsilon=1.0e-5, threshold=0.0001): self.VTX_PRECISION = epsilon self.VTX_DOUBLES_THRSHLD = threshold def point_on_edge(self, p, edge): ''' > p: vector > edge: tuple of 2 vectors < returns: True / False if a point happens to lie on an edge ''' pt, _percent = PtLineIntersect(p, *edge) on_line = (pt-p).length < self.VTX_PRECISION return on_line and (0.0 <= _percent <= 1.0) def line_from_edge_intersect(self, edge1, edge2): ''' > takes 2 tuples, each tuple contains 2 vectors - prepares input for sending to intersect_line_line < returns output of intersect_line_line ''' [p1, p2], [p3, p4] = edge1, edge2 return LineIntersect(p1, p2, p3, p4) def get_intersection(self, edge1, edge2): ''' > takes 2 tuples, each tuple contains 2 vectors < returns the point halfway on line. See intersect_line_line ''' line = self.line_from_edge_intersect(edge1, edge2) return (line[0] + line[1]) / 2 def get_intersection_from_idxs(self, bm, idx1, idx2): ''' > takes reference to bm and 2 indices < returns intersection or None ''' p1, p2 = self.coords_tuple_from_edge_idx(bm, idx1) p3, p4 = self.coords_tuple_from_edge_idx(bm, idx2) a, b = LineIntersect(p1, p2, p3, p4) if (a-b).length < self.VTX_PRECISION: return a def test_coplanar(self, edge1, edge2): ''' the line that describes the shortest line between the two edges would be short if the lines intersect mathematically. If this line is longer than the VTX_PRECISION then they are either coplanar or parallel. ''' line = self.line_from_edge_intersect(edge1, edge2) return (line[0]-line[1]).length < self.VTX_PRECISION def is_coplanar(self, points): """ points: list of 4 mathutils.Vectors returns: True if all 4 points lie on the same plane """ # Simple case: all points are in XOY plane if all([abs(p[2]) < self.VTX_PRECISION for p in points]): return True # More complex general case # Test if triple vector product of these three vectors # is zero v1 = points[1] - points[0] v2 = points[2] - points[0] v3 = points[3] - points[0] cross = v1.cross(v2) dot = cross.dot(v3) return abs(dot) < self.VTX_PRECISION def closest_idx(self, pt, e): ''' > pt: vector > e: bmesh edge < returns: returns index of vertex closest to pt. if both points in e are equally far from pt, then v1 is returned. ''' if isinstance(e, bmesh.types.BMEdge): ev = e.verts v1 = ev[0].co v2 = ev[1].co distance_test = (v1 - pt).length <= (v2 - pt).length return ev[0].index if distance_test else ev[1].index print("received {0}, check expected input in docstring ".format(e)) def closest_vector(self, pt, e): ''' > pt: vector > e: 2 vector tuple < returns: pt, 2 vector tuple: returns closest vector to pt if both points in e are equally far from pt, then v1 is returned. ''' if isinstance(e, tuple) and all([isinstance(co, Vector) for co in e]): v1, v2 = e distance_test = (v1 - pt).length <= (v2 - pt).length return v1 if distance_test else v2 print("received {0}, check expected input in docstring ".format(e)) def coords_tuple_from_edge_idx(self, bm, idx): ''' bm is a bmesh representation ''' return tuple(v.co for v in bm.edges[idx].verts) def vectors_from_indices(self, bm, raw_vert_indices): ''' bm is a bmesh representation ''' return [bm.verts[i].co for i in raw_vert_indices] def vertex_indices_from_edges_tuple(self, bm, edge_tuple): ''' > bm: is a bmesh representation > edge_tuple: contains two edge indices. < returns the vertex indices of edge_tuple ''' e1, e2 = edge_tuple bm_e1, bm_e2 = bm.edges[e1], bm.edges[e2] return [bm_e1.verts[0].index, bm_e1.verts[1].index, bm_e2.verts[0].index, bm_e2.verts[1].index] def vectors_from_edges_tuple(self, bm, edge_tuple): ''' > bm: is a bmesh representation > edge_tuple: contains two edge indices. < returns the vertex coordinates of edge_tuple ''' e1, e2 = edge_tuple bm_e1, bm_e2 = bm.edges[e1], bm.edges[e2] return [bm_e1.verts[0].co, bm_e1.verts[1].co, bm_e2.verts[0].co, bm_e2.verts[1].co] def num_edges_point_lies_on(self, pt, edges): ''' returns the number of edges that a point lies on. ''' res = [self.point_on_edge(pt, edge) for edge in [edges[:2], edges[2:]]] return len([i for i in res if i]) def find_intersecting_edges(self, bm, pt, idx1, idx2): ''' > pt: Vector > idx1, ix2: edge indices, < returns the list of edge indices where pt is on those edges ''' idxs = [idx1, idx2] edges = [self.coords_tuple_from_edge_idx(bm, idx) for idx in idxs] return [idx for edge, idx in zip(edges, idxs) if self.point_on_edge(pt, edge)] def duplicates(self, indices): return len(set(indices)) < 4 def vert_idxs_from_edge_idx(self, bm, idx): edge = bm.edges[idx] return edge.verts[0].index, edge.verts[1].index
Methods
def closest_idx(self, pt, e)
-
pt: vector e: bmesh edge < returns: returns index of vertex closest to pt.
if both points in e are equally far from pt, then v1 is returned.
Expand source code
def closest_idx(self, pt, e): ''' > pt: vector > e: bmesh edge < returns: returns index of vertex closest to pt. if both points in e are equally far from pt, then v1 is returned. ''' if isinstance(e, bmesh.types.BMEdge): ev = e.verts v1 = ev[0].co v2 = ev[1].co distance_test = (v1 - pt).length <= (v2 - pt).length return ev[0].index if distance_test else ev[1].index print("received {0}, check expected input in docstring ".format(e))
def closest_vector(self, pt, e)
-
pt: vector e: 2 vector tuple < returns: pt, 2 vector tuple: returns closest vector to pt
if both points in e are equally far from pt, then v1 is returned.
Expand source code
def closest_vector(self, pt, e): ''' > pt: vector > e: 2 vector tuple < returns: pt, 2 vector tuple: returns closest vector to pt if both points in e are equally far from pt, then v1 is returned. ''' if isinstance(e, tuple) and all([isinstance(co, Vector) for co in e]): v1, v2 = e distance_test = (v1 - pt).length <= (v2 - pt).length return v1 if distance_test else v2 print("received {0}, check expected input in docstring ".format(e))
def coords_tuple_from_edge_idx(self, bm, idx)
-
bm is a bmesh representation
Expand source code
def coords_tuple_from_edge_idx(self, bm, idx): ''' bm is a bmesh representation ''' return tuple(v.co for v in bm.edges[idx].verts)
def duplicates(self, indices)
-
Expand source code
def duplicates(self, indices): return len(set(indices)) < 4
def find_intersecting_edges(self, bm, pt, idx1, idx2)
-
pt: Vector idx1, ix2: edge indices, < returns the list of edge indices where pt is on those edges
Expand source code
def find_intersecting_edges(self, bm, pt, idx1, idx2): ''' > pt: Vector > idx1, ix2: edge indices, < returns the list of edge indices where pt is on those edges ''' idxs = [idx1, idx2] edges = [self.coords_tuple_from_edge_idx(bm, idx) for idx in idxs] return [idx for edge, idx in zip(edges, idxs) if self.point_on_edge(pt, edge)]
def get_intersection(self, edge1, edge2)
-
takes 2 tuples, each tuple contains 2 vectors < returns the point halfway on line. See intersect_line_line
Expand source code
def get_intersection(self, edge1, edge2): ''' > takes 2 tuples, each tuple contains 2 vectors < returns the point halfway on line. See intersect_line_line ''' line = self.line_from_edge_intersect(edge1, edge2) return (line[0] + line[1]) / 2
def get_intersection_from_idxs(self, bm, idx1, idx2)
-
takes reference to bm and 2 indices < returns intersection or None
Expand source code
def get_intersection_from_idxs(self, bm, idx1, idx2): ''' > takes reference to bm and 2 indices < returns intersection or None ''' p1, p2 = self.coords_tuple_from_edge_idx(bm, idx1) p3, p4 = self.coords_tuple_from_edge_idx(bm, idx2) a, b = LineIntersect(p1, p2, p3, p4) if (a-b).length < self.VTX_PRECISION: return a
def is_coplanar(self, points)
-
points: list of 4 mathutils.Vectors returns: True if all 4 points lie on the same plane
Expand source code
def is_coplanar(self, points): """ points: list of 4 mathutils.Vectors returns: True if all 4 points lie on the same plane """ # Simple case: all points are in XOY plane if all([abs(p[2]) < self.VTX_PRECISION for p in points]): return True # More complex general case # Test if triple vector product of these three vectors # is zero v1 = points[1] - points[0] v2 = points[2] - points[0] v3 = points[3] - points[0] cross = v1.cross(v2) dot = cross.dot(v3) return abs(dot) < self.VTX_PRECISION
def line_from_edge_intersect(self, edge1, edge2)
-
takes 2 tuples, each tuple contains 2 vectors - prepares input for sending to intersect_line_line < returns output of intersect_line_line
Expand source code
def line_from_edge_intersect(self, edge1, edge2): ''' > takes 2 tuples, each tuple contains 2 vectors - prepares input for sending to intersect_line_line < returns output of intersect_line_line ''' [p1, p2], [p3, p4] = edge1, edge2 return LineIntersect(p1, p2, p3, p4)
def num_edges_point_lies_on(self, pt, edges)
-
returns the number of edges that a point lies on.
Expand source code
def num_edges_point_lies_on(self, pt, edges): ''' returns the number of edges that a point lies on. ''' res = [self.point_on_edge(pt, edge) for edge in [edges[:2], edges[2:]]] return len([i for i in res if i])
def point_on_edge(self, p, edge)
-
p: vector edge: tuple of 2 vectors < returns: True / False if a point happens to lie on an edge
Expand source code
def point_on_edge(self, p, edge): ''' > p: vector > edge: tuple of 2 vectors < returns: True / False if a point happens to lie on an edge ''' pt, _percent = PtLineIntersect(p, *edge) on_line = (pt-p).length < self.VTX_PRECISION return on_line and (0.0 <= _percent <= 1.0)
def test_coplanar(self, edge1, edge2)
-
the line that describes the shortest line between the two edges would be short if the lines intersect mathematically. If this line is longer than the VTX_PRECISION then they are either coplanar or parallel.
Expand source code
def test_coplanar(self, edge1, edge2): ''' the line that describes the shortest line between the two edges would be short if the lines intersect mathematically. If this line is longer than the VTX_PRECISION then they are either coplanar or parallel. ''' line = self.line_from_edge_intersect(edge1, edge2) return (line[0]-line[1]).length < self.VTX_PRECISION
def vectors_from_edges_tuple(self, bm, edge_tuple)
-
bm: is a bmesh representation edge_tuple: contains two edge indices. < returns the vertex coordinates of edge_tuple
Expand source code
def vectors_from_edges_tuple(self, bm, edge_tuple): ''' > bm: is a bmesh representation > edge_tuple: contains two edge indices. < returns the vertex coordinates of edge_tuple ''' e1, e2 = edge_tuple bm_e1, bm_e2 = bm.edges[e1], bm.edges[e2] return [bm_e1.verts[0].co, bm_e1.verts[1].co, bm_e2.verts[0].co, bm_e2.verts[1].co]
def vectors_from_indices(self, bm, raw_vert_indices)
-
bm is a bmesh representation
Expand source code
def vectors_from_indices(self, bm, raw_vert_indices): ''' bm is a bmesh representation ''' return [bm.verts[i].co for i in raw_vert_indices]
def vert_idxs_from_edge_idx(self, bm, idx)
-
Expand source code
def vert_idxs_from_edge_idx(self, bm, idx): edge = bm.edges[idx] return edge.verts[0].index, edge.verts[1].index
def vertex_indices_from_edges_tuple(self, bm, edge_tuple)
-
bm: is a bmesh representation edge_tuple: contains two edge indices. < returns the vertex indices of edge_tuple
Expand source code
def vertex_indices_from_edges_tuple(self, bm, edge_tuple): ''' > bm: is a bmesh representation > edge_tuple: contains two edge indices. < returns the vertex indices of edge_tuple ''' e1, e2 = edge_tuple bm_e1, bm_e2 = bm.edges[e1], bm.edges[e2] return [bm_e1.verts[0].index, bm_e1.verts[1].index, bm_e2.verts[0].index, bm_e2.verts[1].index]