Module sverchok.utils.adaptive_surface

Expand source code
# This file is part of project Sverchok. It's copyrighted by the contributors
# recorded in the version control history of the file, available from
# its original location https://github.com/nortikin/sverchok/commit/master
#  
# SPDX-License-Identifier: GPL3
# License-Filename: LICENSE

import numpy as np
import numpy.random
from math import ceil, isnan

try:
    from mathutils.geometry import delaunay_2d_cdt
except ImportError:
    delaunay_2d_cdt = None

from sverchok.utils.sv_logging import sv_logger
from sverchok.utils.geom_2d.merge_mesh import crop_mesh_delaunay
from sverchok.utils.voronoi import computeDelaunayTriangulation, Site

GAUSS = 'gauss'
MAXIMUM = 'max'
MEAN = 'mean'

class PopulationData(object):
    def __init__(self):
        self.surface = None
        self.u_min = self.u_max = None
        self.v_min = self.v_max = None
        self.new_us = self.new_vs = None
        self._points = None
        self.samples_u = self.samples_v = None

    @property
    def points(self):
        if self._points is None:
            self._points = self.surface.evaluate_array(self.us, self.vs).reshape((self.samples_u, self.samples_v, 3))
        return self._points

def populate_surface_uv(surface, samples_u, samples_v, by_curvature=True, curvature_type = MAXIMUM, curvature_clip = 100, by_area=True, min_ppf=1, max_ppf=5, seed=1):
    u_min, u_max = surface.get_u_min(), surface.get_u_max()
    v_min, v_max = surface.get_v_min(), surface.get_v_max()
    us_range = np.linspace(u_min, u_max, num=samples_u)
    vs_range = np.linspace(v_min, v_max, num=samples_v)
    us, vs = np.meshgrid(us_range, vs_range, indexing='ij')
    us = us.flatten()
    vs = vs.flatten()

    data = PopulationData()
    data.surface = surface
    data.us = us
    data.vs = vs
    data.u_min = u_min
    data.v_min = v_min
    data.u_max = u_max
    data.v_max = v_max
    data.samples_u = samples_u
    data.samples_v = samples_v

    if by_curvature:
        if curvature_type == GAUSS:
            curvatures = abs(surface.gauss_curvature_array(us, vs))
        elif curvature_type == MAXIMUM:
            curvatures_1, curvatures_2 = surface.principal_curvature_values_array(us, vs, order=False)
            curvatures = abs(np.vstack((curvatures_1, curvatures_2))).max(axis=0)
        elif curvature_type == MEAN:
            curvatures = abs(surface.mean_curvature_array(us, vs))
        else:
            raise Exception("Unsupported curvature type:" + curvature_type)
        if curvature_clip:
            curvatures = curvatures.clip(0, curvature_clip)
        curvatures = curvatures.reshape((samples_u, samples_v))

        curvatures_0 = curvatures[:-1, :-1]
        curvatures_du = curvatures[1:, :-1]
        curvatures_dv = curvatures[:-1, 1:]
        curvatures_du_dv = curvatures[1:, 1:]

        max_curvatures = np.max([curvatures_0, curvatures_du, curvatures_dv, curvatures_du_dv], axis=0)
        max_curvatures[np.isnan(max_curvatures)] = 0
        max_curvature = max_curvatures.max()
        min_curvature = max_curvatures.min()
        curvatures_range = max_curvature - min_curvature
        sv_logger.info("Curvature range: %s - %s", min_curvature, max_curvature)
        if curvatures_range == 0:
            max_curvatures = np.zeros((samples_u-1, samples_v-1))
        else:
            max_curvatures = (max_curvatures - min_curvature) / curvatures_range
    else:
        max_curvatures = np.zeros((samples_u-1, samples_v-1))
        curvatures_range = 0

    if by_area:
        surface_points = surface.evaluate_array(us, vs)
        surface_points = surface_points.reshape((samples_u, samples_v, 3))
        data._points = surface_points

        points_0 = surface_points[:-1, :-1,:]
        points_du = surface_points[1:, :-1,:]
        points_dv = surface_points[:-1, 1:,:]
        points_du_dv = surface_points[1:, 1:,:]

        areas_1 = np.linalg.norm(np.cross(points_du_dv - points_0, points_du - points_0), axis=2)/2.0
        areas_2 = np.linalg.norm(np.cross(points_dv - points_0, points_du_dv - points_0), axis=2)/2.0
        areas = areas_1 + areas_2
        h_u = us_range[1] - us_range[0]
        h_v = vs_range[1] - vs_range[0]
        areas = areas / (h_u * h_v)
        min_area = areas.min()
        max_area = areas.max()
        areas_range = max_area - min_area
        sv_logger.info("Areas range: %s - %s", min_area, max_area)
        if areas_range == 0:
            areas = np.zeros((samples_u-1, samples_v-1))
        else:
            areas = (areas - min_area) / areas_range
    else:
        areas = np.zeros((samples_u-1, samples_v-1))
        areas_range = 0

    factors = max_curvatures + areas
    factor_range = areas_range + curvatures_range
    if by_area and by_curvature:
        factors = factors / 2.0
        factor_range = factor_range / 2.0
    max_factor = factors.max()
    if max_factor != 0:
        factors = factors / max_factor
    # sv_logger.info("Factors: %s - %s (%s)", factors.min(), factors.max(), factor_range)
    # sv_logger.info("Areas: %s - %s", areas.min(), areas.max())
    # sv_logger.info("Curvatures: %s - %s", max_curvatures.min(), max_curvatures.max())

    ppf_range = max_ppf - min_ppf

    if not seed:
        seed = 12345
    numpy.random.seed(seed)
    new_u = []
    new_v = []
    for i in range(samples_u-1):
        u1 = us_range[i]
        u2 = us_range[i+1]
        for j in range(samples_v-1):
            v1 = vs_range[j]
            v2 = vs_range[j+1]
            factor = factors[i,j]
            if factor_range == 0 or isnan(factor):
                ppf = (min_ppf + max_ppf)/2
            else:
                ppf = min_ppf + ppf_range * factor
            #ppf = int(round(ppf))
            ppf = ceil(ppf)
#             if ppf > 1:
#                 sv_logger.info("I %s, J %s, factor %s, PPF %s", i, j, factor, ppf)
#                 sv_logger.info("U %s - %s, V %s - %s", u1, u2, v1, v2)
            u_r = numpy.random.uniform(u1, u2, size=ppf).tolist()
            v_r = numpy.random.uniform(v1, v2, size=ppf).tolist()
            new_u.extend(u_r)
            new_v.extend(v_r)

    data.new_us = new_u
    data.new_vs = new_v
    return data

def tessellate_curve(curve, samples_t):
    t_min, t_max = curve.get_u_bounds()
    ts = np.linspace(t_min, t_max, num=samples_t)
    verts = curve.evaluate_array(ts).tolist()
    n = len(ts)
    edges = [[i, i + 1] for i in range(n - 1)]
    edges.append([n-1, 0])
    faces = [list(range(n))]
    return verts, edges, faces

def _calc_u_length(surface_points, v_idx):
    dus = surface_points[1:, v_idx] - surface_points[:-1, v_idx]
    u_lengths = np.linalg.norm(dus, axis=1)
    return np.sum(u_lengths)

def _calc_v_length(surface_points, u_idx):
    dvs = surface_points[u_idx, 1:] - surface_points[u_idx, :-1]
    v_lengths = np.linalg.norm(dvs, axis=1)
    return np.sum(v_lengths)

def calc_sizes(surface_points, samples_u, samples_v):
    # TODO: we could check all U/V iso-parametric lines length and select maximums.

    length_u_0 = _calc_u_length(surface_points, 0)
    length_u_1 = _calc_u_length(surface_points, samples_v // 2)
    length_u_2 = _calc_u_length(surface_points, samples_v -1)

    length_v_0 = _calc_v_length(surface_points, 0)
    length_v_1 = _calc_v_length(surface_points, samples_u // 2)
    length_v_2 = _calc_v_length(surface_points, samples_u -1)

    target_u_length = max(length_u_0, length_u_1, length_u_2)
    target_v_length = max(length_v_0, length_v_1, length_v_2)

    return target_u_length, target_v_length

def make_outer_edges(samples_u, samples_v):
    edges_1 = [(i, i+1) for i in range(samples_u-1)]
    edges_2 = [(samples_u*(i+1) - 1, samples_u*(i+2) - 1) for i in range(samples_v-1)]
    edges_3 = [(samples_u*(samples_v - 1) + i, samples_u*(samples_v - 1) + i + 1) for i in range(samples_u-1)]
    edges_4 = [(samples_u*i, samples_u*(i+1)) for i in range(samples_v-1)]
    edges = edges_1 + edges_2 + edges_3 + edges_4
    return edges

def delaunay_triangulatrion(samples_u, samples_v, us_list, vs_list, u_coeff, v_coeff, epsilon):
    if delaunay_2d_cdt is None:
        # Pure-python implementation
        points_uv = [Site(u * u_coeff, v * v_coeff) for u, v in zip(us_list, vs_list)]
        faces = computeDelaunayTriangulation(points_uv)
        return faces
    else:
        points_scaled = [(u*u_coeff, v*v_coeff) for u,v in zip(us_list, vs_list)]
        INNER = 1
        # delaunay_2d_cdt function wont' work if we do not provide neither edges nor faces.
        # So let's just construct the outer faces of the rectangular grid
        # (indices in `edges' depend on the fact that in `adaptive_subdivide` we
        # add randomly generated points to the end of us_list/vs_list).
        edges = make_outer_edges(samples_v, samples_u)
        vert_coords, edges, faces, orig_verts, orig_edges, orig_faces = delaunay_2d_cdt(points_scaled, edges, [], INNER, epsilon)
        return faces

def adaptive_subdivide(surface, samples_u, samples_v, by_curvature=True, curvature_type = MAXIMUM, curvature_clip = 100, by_area=True, add_points=None, min_ppf=1, max_ppf=5, trim_curve = None, samples_t = 100, trim_mode = 'inner', epsilon = 1e-4, seed=1):
    data = populate_surface_uv(surface, samples_u, samples_v,
                            by_curvature = by_curvature,
                            curvature_type = curvature_type,
                            curvature_clip = curvature_clip,
                            by_area = by_area,
                            min_ppf = min_ppf, max_ppf = max_ppf, seed =seed)
    us, vs, new_u, new_v = data.us, data.vs, data.new_us, data.new_vs
    us_list = list(us) + new_u
    vs_list = list(vs) + new_v
    if add_points and len(add_points[0]) > 0:
        us_list.extend([p[0] for p in add_points])
        vs_list.extend([p[1] for p in add_points])

    surface_points = data.points

    target_u_length, target_v_length = calc_sizes(surface_points, samples_u, samples_v)

    src_u_length = data.u_max - data.u_min
    src_v_length = data.v_max - data.v_min

    u_coeff = target_u_length / src_u_length
    v_coeff = target_v_length / src_v_length

    faces = delaunay_triangulatrion(samples_u, samples_v, us_list, vs_list, u_coeff, v_coeff, epsilon)
    #points_uv = [Site(u * u_coeff, v * v_coeff) for u, v in zip(us_list, vs_list)]
    #faces = computeDelaunayTriangulation(points_uv)

    if trim_curve is not None:
        curve_verts, curve_edges, curve_faces = tessellate_curve(trim_curve, samples_t)
        curve_verts_scaled = [(u * u_coeff, v * v_coeff, 0) for u, v, _ in curve_verts]
        triangulation_verts_scaled = [(u * u_coeff, v * v_coeff, 0) for u, v in zip(us_list, vs_list)]
        xy_verts, faces, _ = crop_mesh_delaunay(triangulation_verts_scaled, faces, curve_verts_scaled, curve_faces, trim_mode, epsilon)
        us_list = [p[0] / u_coeff for p in xy_verts]
        vs_list = [p[1] / v_coeff for p in xy_verts]

    return np.array(us_list), np.array(vs_list), faces

Functions

def adaptive_subdivide(surface, samples_u, samples_v, by_curvature=True, curvature_type='max', curvature_clip=100, by_area=True, add_points=None, min_ppf=1, max_ppf=5, trim_curve=None, samples_t=100, trim_mode='inner', epsilon=0.0001, seed=1)
Expand source code
def adaptive_subdivide(surface, samples_u, samples_v, by_curvature=True, curvature_type = MAXIMUM, curvature_clip = 100, by_area=True, add_points=None, min_ppf=1, max_ppf=5, trim_curve = None, samples_t = 100, trim_mode = 'inner', epsilon = 1e-4, seed=1):
    data = populate_surface_uv(surface, samples_u, samples_v,
                            by_curvature = by_curvature,
                            curvature_type = curvature_type,
                            curvature_clip = curvature_clip,
                            by_area = by_area,
                            min_ppf = min_ppf, max_ppf = max_ppf, seed =seed)
    us, vs, new_u, new_v = data.us, data.vs, data.new_us, data.new_vs
    us_list = list(us) + new_u
    vs_list = list(vs) + new_v
    if add_points and len(add_points[0]) > 0:
        us_list.extend([p[0] for p in add_points])
        vs_list.extend([p[1] for p in add_points])

    surface_points = data.points

    target_u_length, target_v_length = calc_sizes(surface_points, samples_u, samples_v)

    src_u_length = data.u_max - data.u_min
    src_v_length = data.v_max - data.v_min

    u_coeff = target_u_length / src_u_length
    v_coeff = target_v_length / src_v_length

    faces = delaunay_triangulatrion(samples_u, samples_v, us_list, vs_list, u_coeff, v_coeff, epsilon)
    #points_uv = [Site(u * u_coeff, v * v_coeff) for u, v in zip(us_list, vs_list)]
    #faces = computeDelaunayTriangulation(points_uv)

    if trim_curve is not None:
        curve_verts, curve_edges, curve_faces = tessellate_curve(trim_curve, samples_t)
        curve_verts_scaled = [(u * u_coeff, v * v_coeff, 0) for u, v, _ in curve_verts]
        triangulation_verts_scaled = [(u * u_coeff, v * v_coeff, 0) for u, v in zip(us_list, vs_list)]
        xy_verts, faces, _ = crop_mesh_delaunay(triangulation_verts_scaled, faces, curve_verts_scaled, curve_faces, trim_mode, epsilon)
        us_list = [p[0] / u_coeff for p in xy_verts]
        vs_list = [p[1] / v_coeff for p in xy_verts]

    return np.array(us_list), np.array(vs_list), faces
def calc_sizes(surface_points, samples_u, samples_v)
Expand source code
def calc_sizes(surface_points, samples_u, samples_v):
    # TODO: we could check all U/V iso-parametric lines length and select maximums.

    length_u_0 = _calc_u_length(surface_points, 0)
    length_u_1 = _calc_u_length(surface_points, samples_v // 2)
    length_u_2 = _calc_u_length(surface_points, samples_v -1)

    length_v_0 = _calc_v_length(surface_points, 0)
    length_v_1 = _calc_v_length(surface_points, samples_u // 2)
    length_v_2 = _calc_v_length(surface_points, samples_u -1)

    target_u_length = max(length_u_0, length_u_1, length_u_2)
    target_v_length = max(length_v_0, length_v_1, length_v_2)

    return target_u_length, target_v_length
def delaunay_triangulatrion(samples_u, samples_v, us_list, vs_list, u_coeff, v_coeff, epsilon)
Expand source code
def delaunay_triangulatrion(samples_u, samples_v, us_list, vs_list, u_coeff, v_coeff, epsilon):
    if delaunay_2d_cdt is None:
        # Pure-python implementation
        points_uv = [Site(u * u_coeff, v * v_coeff) for u, v in zip(us_list, vs_list)]
        faces = computeDelaunayTriangulation(points_uv)
        return faces
    else:
        points_scaled = [(u*u_coeff, v*v_coeff) for u,v in zip(us_list, vs_list)]
        INNER = 1
        # delaunay_2d_cdt function wont' work if we do not provide neither edges nor faces.
        # So let's just construct the outer faces of the rectangular grid
        # (indices in `edges' depend on the fact that in `adaptive_subdivide` we
        # add randomly generated points to the end of us_list/vs_list).
        edges = make_outer_edges(samples_v, samples_u)
        vert_coords, edges, faces, orig_verts, orig_edges, orig_faces = delaunay_2d_cdt(points_scaled, edges, [], INNER, epsilon)
        return faces
def make_outer_edges(samples_u, samples_v)
Expand source code
def make_outer_edges(samples_u, samples_v):
    edges_1 = [(i, i+1) for i in range(samples_u-1)]
    edges_2 = [(samples_u*(i+1) - 1, samples_u*(i+2) - 1) for i in range(samples_v-1)]
    edges_3 = [(samples_u*(samples_v - 1) + i, samples_u*(samples_v - 1) + i + 1) for i in range(samples_u-1)]
    edges_4 = [(samples_u*i, samples_u*(i+1)) for i in range(samples_v-1)]
    edges = edges_1 + edges_2 + edges_3 + edges_4
    return edges
def populate_surface_uv(surface, samples_u, samples_v, by_curvature=True, curvature_type='max', curvature_clip=100, by_area=True, min_ppf=1, max_ppf=5, seed=1)
Expand source code
def populate_surface_uv(surface, samples_u, samples_v, by_curvature=True, curvature_type = MAXIMUM, curvature_clip = 100, by_area=True, min_ppf=1, max_ppf=5, seed=1):
    u_min, u_max = surface.get_u_min(), surface.get_u_max()
    v_min, v_max = surface.get_v_min(), surface.get_v_max()
    us_range = np.linspace(u_min, u_max, num=samples_u)
    vs_range = np.linspace(v_min, v_max, num=samples_v)
    us, vs = np.meshgrid(us_range, vs_range, indexing='ij')
    us = us.flatten()
    vs = vs.flatten()

    data = PopulationData()
    data.surface = surface
    data.us = us
    data.vs = vs
    data.u_min = u_min
    data.v_min = v_min
    data.u_max = u_max
    data.v_max = v_max
    data.samples_u = samples_u
    data.samples_v = samples_v

    if by_curvature:
        if curvature_type == GAUSS:
            curvatures = abs(surface.gauss_curvature_array(us, vs))
        elif curvature_type == MAXIMUM:
            curvatures_1, curvatures_2 = surface.principal_curvature_values_array(us, vs, order=False)
            curvatures = abs(np.vstack((curvatures_1, curvatures_2))).max(axis=0)
        elif curvature_type == MEAN:
            curvatures = abs(surface.mean_curvature_array(us, vs))
        else:
            raise Exception("Unsupported curvature type:" + curvature_type)
        if curvature_clip:
            curvatures = curvatures.clip(0, curvature_clip)
        curvatures = curvatures.reshape((samples_u, samples_v))

        curvatures_0 = curvatures[:-1, :-1]
        curvatures_du = curvatures[1:, :-1]
        curvatures_dv = curvatures[:-1, 1:]
        curvatures_du_dv = curvatures[1:, 1:]

        max_curvatures = np.max([curvatures_0, curvatures_du, curvatures_dv, curvatures_du_dv], axis=0)
        max_curvatures[np.isnan(max_curvatures)] = 0
        max_curvature = max_curvatures.max()
        min_curvature = max_curvatures.min()
        curvatures_range = max_curvature - min_curvature
        sv_logger.info("Curvature range: %s - %s", min_curvature, max_curvature)
        if curvatures_range == 0:
            max_curvatures = np.zeros((samples_u-1, samples_v-1))
        else:
            max_curvatures = (max_curvatures - min_curvature) / curvatures_range
    else:
        max_curvatures = np.zeros((samples_u-1, samples_v-1))
        curvatures_range = 0

    if by_area:
        surface_points = surface.evaluate_array(us, vs)
        surface_points = surface_points.reshape((samples_u, samples_v, 3))
        data._points = surface_points

        points_0 = surface_points[:-1, :-1,:]
        points_du = surface_points[1:, :-1,:]
        points_dv = surface_points[:-1, 1:,:]
        points_du_dv = surface_points[1:, 1:,:]

        areas_1 = np.linalg.norm(np.cross(points_du_dv - points_0, points_du - points_0), axis=2)/2.0
        areas_2 = np.linalg.norm(np.cross(points_dv - points_0, points_du_dv - points_0), axis=2)/2.0
        areas = areas_1 + areas_2
        h_u = us_range[1] - us_range[0]
        h_v = vs_range[1] - vs_range[0]
        areas = areas / (h_u * h_v)
        min_area = areas.min()
        max_area = areas.max()
        areas_range = max_area - min_area
        sv_logger.info("Areas range: %s - %s", min_area, max_area)
        if areas_range == 0:
            areas = np.zeros((samples_u-1, samples_v-1))
        else:
            areas = (areas - min_area) / areas_range
    else:
        areas = np.zeros((samples_u-1, samples_v-1))
        areas_range = 0

    factors = max_curvatures + areas
    factor_range = areas_range + curvatures_range
    if by_area and by_curvature:
        factors = factors / 2.0
        factor_range = factor_range / 2.0
    max_factor = factors.max()
    if max_factor != 0:
        factors = factors / max_factor
    # sv_logger.info("Factors: %s - %s (%s)", factors.min(), factors.max(), factor_range)
    # sv_logger.info("Areas: %s - %s", areas.min(), areas.max())
    # sv_logger.info("Curvatures: %s - %s", max_curvatures.min(), max_curvatures.max())

    ppf_range = max_ppf - min_ppf

    if not seed:
        seed = 12345
    numpy.random.seed(seed)
    new_u = []
    new_v = []
    for i in range(samples_u-1):
        u1 = us_range[i]
        u2 = us_range[i+1]
        for j in range(samples_v-1):
            v1 = vs_range[j]
            v2 = vs_range[j+1]
            factor = factors[i,j]
            if factor_range == 0 or isnan(factor):
                ppf = (min_ppf + max_ppf)/2
            else:
                ppf = min_ppf + ppf_range * factor
            #ppf = int(round(ppf))
            ppf = ceil(ppf)
#             if ppf > 1:
#                 sv_logger.info("I %s, J %s, factor %s, PPF %s", i, j, factor, ppf)
#                 sv_logger.info("U %s - %s, V %s - %s", u1, u2, v1, v2)
            u_r = numpy.random.uniform(u1, u2, size=ppf).tolist()
            v_r = numpy.random.uniform(v1, v2, size=ppf).tolist()
            new_u.extend(u_r)
            new_v.extend(v_r)

    data.new_us = new_u
    data.new_vs = new_v
    return data
def tessellate_curve(curve, samples_t)
Expand source code
def tessellate_curve(curve, samples_t):
    t_min, t_max = curve.get_u_bounds()
    ts = np.linspace(t_min, t_max, num=samples_t)
    verts = curve.evaluate_array(ts).tolist()
    n = len(ts)
    edges = [[i, i + 1] for i in range(n - 1)]
    edges.append([n-1, 0])
    faces = [list(range(n))]
    return verts, edges, faces

Classes

class PopulationData
Expand source code
class PopulationData(object):
    def __init__(self):
        self.surface = None
        self.u_min = self.u_max = None
        self.v_min = self.v_max = None
        self.new_us = self.new_vs = None
        self._points = None
        self.samples_u = self.samples_v = None

    @property
    def points(self):
        if self._points is None:
            self._points = self.surface.evaluate_array(self.us, self.vs).reshape((self.samples_u, self.samples_v, 3))
        return self._points

Instance variables

var points
Expand source code
@property
def points(self):
    if self._points is None:
        self._points = self.surface.evaluate_array(self.us, self.vs).reshape((self.samples_u, self.samples_v, 3))
    return self._points