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VISUAL PHYSICS ONLINE 

 

EXCEL SIMULATION 

MOTION OF SATELLITES 
 

DOWNLOAD the MS EXCEL program  PA50satellite.xlsx 

and view the worksheet Display as shown in the figure below. 

 

One of the most important questions historically in Physics was how the 

planets move.  Many historians consider the field of Physics to date from 

the work of Newton, and the motion of the planets was the principle 

problem Newton set out to solve.  In the process of doing this, he not only 

introduced his laws of motion and discovered the law of gravity, he also 

developed differential and integral calculus. 

 

Today, the same law that governs the motion of planets, is used by 

scientists to put satellites into orbit around the Earth and to send spacecraft 

through the solar system. 

 

How the planets or satellites move is determined by gravitational forces.  

The forces of gravity are the only forces applied to the planets.  The 

gravitational forces between the planets are very small compared with the 

force due to the Sun since the mass of the planets are much less than the 

Sun's mass. Each planet moves almost the way the gravitational force of 

the Sun alone dictates, as though the other planets did not exist. 

 

The motion of a planet is governed by the Law of Universal Gravitation 

 

 F = G MS m / r2 

http://www.physics.usyd.edu.au/teach_res/hsp/sp/spHome.htm
http://www.physics.usyd.edu.au/teach_res/hsp/sp/mod5/
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where G is the Universal Gravitational Constant, MS is the mass of the 

Sun, m is the mass of the planet and r is the distance from the Sun to the 

planet. 

 G = 6.6710-11 N.m2.kg2 

MS = 2.01030 kg 

 

Historically, the laws of planetary motion were discovered by the 

outstanding German astronomer Johannes Kepler (1571-1630) on the basis 

of almost 20 years of processing astronomical data, before Newton and 

without the aid of the law of gravitation. 

 

Kepler's Laws of Planetary Motion 

 

1     The path of each planet around the Sun is an ellipse with the Sun at 

one focus. 

 

2 Each planet moves so that all imaginary lines drawn from the Sun to 

the planet sweeps out equal areas in equal periods of time. 

 

3 The ratio of the squares of the periods of revolution of planets is equal 

to the ratio of the cubes of their orbital radii (mean distance from the 

Sun or length of semimajor axis, a) 
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Kepler’s First Law 

A planet describes an ellipse with the Sun at one focus.  But what kind of 

an ellipse do planets describe? It turns out they are very close to circles. 

The path of the planet nearest the Sun,  Mercury,  differs  most  from a  

circle,  but even in this case, the longest diameter is only 2% greater than 

the shortest one. Bodies other than the planets, for example, comets move 

around the Sun in greatly flattened ellipses.  

 

Since the Sun is located at one of the foci and not the centre, the distance 

from the planet to the Sun changes more noticeably. The point nearest the 

Sun is called the perihelion and the farthest point from the Sun is the 

aphelion. Half the distance from the perihelion to the aphelion is known as 

the semimajor radius, a. The other radius of the ellipse is the semiminor 

radius, b. 

 

The Path of a Planet Around the Sun is an Ellipse 

 

x2 / a2 + y2 / b2 = 1 
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Kepler's Second Law 

Each planet moves so that an imaginary line drawn from the Sun to the 

planet sweeps out equal areas in equal periods of time. This law results 

from the Law of Conservation of Angular Momentum 

                     Angular momentum = L = m v r = constant 

 

where m is the mass of the planet, r is the distance from the Sun and v is 

the tangential velocity of the planet. 

 

Angular momentum is conserved because the force acting on the orbital 

body is always directed towards the centre of the coordinate system (0,0), 

i.e., the Sun.  Thus, this force cannot exert a torque (twist) on the orbiting 

body.  Since there is zero torque acting, the orbital angular momentum 

must remain constant. 
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Since a planet moves in an elliptical orbit, the distance r is continually 

changing. As it approaches nearer the Sun the planet must speed up and as 

it gets further away from the Sun it must slow down such that the product 

 v r  =   constant. 

 

The area of each triangle (for a small time interval dt) can be expressed as 

Al = ½ (vl dt) rl          A2 = ½ (v2 dt) r2          A1 / A2 =  vl rl / v2 r2 

 

Since angular momentum must be conserved, L = m v1 rl = m v2 r2 

 A1 / A2 =  1 

 

Therefore, in equal time intervals, equal areas are swept out. 

 

 

  



 

 

 

6 

Kepler's Third Law 

For an orbiting planet, the centripetal force results from the gravitational 

attraction between the planet and the Sun 

 

                   Centripetal force = Gravitational force 

 

                             m v2 / a  =  G MS m / a2 

 

                             v2 = G MS / a 

 

                             v = a ,           = 2  f = 2  / T 

 

                             v2  =  (4 2 / T2 ) a2  =  G MS / a 
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We can also apply these laws to the motion of satellites around 

the Earth if we can ignore any frictional forces acting on the 

satellite.  

 

In our EXCEL simulation, we are going to model the motion of 

a satellite given an initial velocity by firing a rocket for a very 

small time interval and calculating its resulting trajectory. 
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SIMULATION          MOTION OF A SATELLITE 

 

DOWNLOAD the MS EXCEL program  PA50satellite.xlsx 

and view the worksheet Display as shown in the figure below. 

 

 

The EXCEL Worksheet is used for a simulation of the motion of a 

satellite around the Earth. To simplify the calculations, the product GME 

and the radius of the Earth RE are set to one  1 1E EG M R  . The 

location of the Earth is at the Origin (0,0) and corresponds to a focus 

point of the ellipse.  

 

  

http://www.physics.usyd.edu.au/teach_res/hsp/sp/mod5/
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You can change three parameters in our model by entering their values 

into one of three cells.  

• The simulation time t. Always start the simulation with a low value 

for t and slowly increment its value. Often, you need to find t so 

that the simulation time is equal to the period T of the orbit. 

• The initial velocity of the satellite v0y. The satellite is always 

launched with an initial velocity which only has a Y component 

 0 00 2 0y xv v   . 

•  The initial position of the satellite R0: 

             initial x position, xo = R0       01 2x    

             initial y position, yo = 0 

 

EXPLORATIONS 

1 

Basically, there are three types of trajectories for the motion of the 

satellite. Predict what are the three trajectories. 

 

Vary the input parameters and observe the graphical output so that you 

become familiar with using the Worksheet.  Observe: can you identify 

the three trajectories. Explain any discrepancies between your predictions 

and observations. 
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2 

Given that 1EG M   show that 

(1) Orbital velocity for a circular orbit    

0

1
orbv

R
  

(2)    Escape velocity  

0

2
escv

R
  

(3) Kepler’s 3rd Law   
3/2

2T a   

 

Enter these formula into the indicated Cells in the Worksheet. 

 

 

 

3    Circular orbits 

3.1   Select three values of R0 from 1 to 2 and vary the initial velocity 0 yv  

to obtain circular orbits. Do the numerical results you obtain for 0 yv  

agree with the predictions of equation 1? In each case vary the time 

interval for the simulation to show one orbit. Do your time intervals agree 

with the predictions of equation 3? 

 

3.2   From the spacing of the dots marking the trajectory, what can you 

conclude about the velocity of the satellite? 

(The dots are plotted at equal time intervals). 

 

3.3   Calculate the circumference of the orbit. Hence, calculate the orbital 

velocity from your measurements of the circumference and period. Does 

your value agree with the other predictions for the orbital velocity? 
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 4   Elliptical orbits 

4.1   Start with 0 2R   and set 0 yv  so that you get a circular orbit. 

Predict the shape of the orbit as you increase the value of 0 yv  and then 

decrease its value. Observe the resulting plots of the trajectory and 

explain any discrepancies between your observations and predictions. 

 

Set the input parameters so that you get one orbital for a non-circular 

elliptical trajectory. 

 

4.2   From the plot of the trajectory. Test that the orbit is actually an 

ellipse.    An ellipse satisfies the condition that the sum of the distances 

from any point on it to the two foci is a constant. Trace the trajectory onto 

a piece of paper to make the distance measurements from two points on 

the trajectory. 

 

Is Kepler's First Law obeyed for each of the above initial conditions?  

Explain your answer. 

 

4.3   What is the significance of the spacing of the dots showing the 

trajectory of the planet?   Comment on the velocity of a planet for an 

elliptical orbit. 

From the numerical results, what are the maximum and minimum 

velocities?  where is the planet moving most rapidly?  What is this 

point called? Where is the planet moving most slowly?  What is this 

point called? (View calculations Worksheet). 

 

Is Kepler's Second Law satisfied? (View calculations Worksheet). 
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4.4   Measure the semimajor radius a of the ellipse. Hence, calculate the 

period. Does the value agree with the simulation value of the period? 

Is Kepler’s Third Law satisfied? 

 

4.5   What is the direction of the force on the satellite at each point in its 

trajectory? 

 

5     Satellite crashes to Earth 

Input 0 2R   

 

Predict what will happen if you enter  0 0yv  . Observe and explain your 

predications and observations. 

 

Find the smallest value of 0 yv  so that the satellite will just orbit the Earth 

and not crash. 

 

6     Satellite escape Earth’s gravitational field 

For 0 2R   calculate the escape velocities.  Confirm your calculations 

with the trajectories of the satellite. When the satellite is far from the 

Earth, what can you conclude about the satellite’s velocity? 
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Answers  

1 

The satellite can 

1. Crash into the Earth. 

2. Orbit the Earth in an elliptical path (a circle is a special case of an 

ellipse). 

3. Escape from the Earth’s gravitational field. 

 

3.2 

0 01.5 0.82 0.82 11.54y orbR v v T      

 

3.3    The spacing of the dots is uniform, hence, we can conclude that the 

magnitude of the velocity is constant, but it is accelerating since it is 

always changing direction. 

    Circumference C = 9.42    0.82orbv    

Excellent agreement between numerical results from graph and the 

theoretical predictions from the equations. 
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4 

 

0 02.0 0.820 33.5yR v T    

 

4.2   An ellipse satisfies the condition that the sum of the distances, d 

from any point on it to the two foci is a constant. We can conclude that 

with the inputs used, Kepler’s 1st Law is satisfied – the trajectory of the 

satellite is an ellipse. Kepler's First Law is not obeyed for all initial 

conditions.  If the satellite is moving just at the right speed, the orbit is 

circular.  If the satellite initially is moving slightly more rapidly, then the 

orbit will be elliptical with the trajectory outside that of the circular orbit.  

If the satellite initially is moving slightly more slowly, then the orbit will 

be elliptical with the trajectory inside that of the circular orbit. If the 

satellite is initially moving too rapidly, it escapes from the Earth and if 

too slowly it crashes into the Earth’s surface. 
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4.3 

The spacing of the dot is a measure of the average speed of the satellite at 

that location. The dots are equally spaced for the circular orbit.  For a 

non-circular elliptical orbit, the spacing of the dots is not regular.  As the 

satellite approaches the perihelion (closest point of the satellite to the 

Earth) the dots are widely spaced.  This indicates a large speed compared 

to when the planet approaches the aphelion (furthest point of the satellite 

from the Earth) where the dots are closely spaced and the speed is 

smaller. 

 

 

From the numerical, the product v r  is essentially constant, indicating 

conservation of angular momentum and hence equal areas swept out in 

equal time intervals. So, Kepler’s 2nd Law is satisfied. 

( Worksheet calculations, column K L(t) = v(t)*r(t) ) 

 

4.4 

0 02.0 0.820 33.5yR v T    

Kepler’s 3rd Law is satisfied 
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4.5 

The direction of the force on the satellite is always directed to the centre 

of the coordinate system (0,0) i.e., to the Earth that is located at one of the 

foci of the ellipse. 
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5   Satellite crashes 

If 0 0yv   the satellite falls in a straight line and crashes into the Earth’s 

surface. If 00 ~ 0.58yv   the satellite moves in a parabolic path before 

crashing into the surface of the Earth.  

  

6   Satellite escapes 

The initial speed of the satellite is so large the gravitational force cannot 

bend the trajectory into a bound orbit. The satellite escapes on a path 

approaching a straight line and with a speed that approaches a constant 

value as it gets further from the Earth.  This happens because the force 

acting between the two bodies decreases rapidly as their separation 

increases, so that before long the moving body has effectively escaped the 

influence of that force. 
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Appendix 

       Numerical Method for calculating the trajectory 

 

Newton’s Second Law            F(t) = m d2x(t)/dt2 (A1) 

 

can be solved numerically to find the position of the particle as a function 

of time. In this numerical method, approximations to the first and second 

derivatives are made. Consider a single-valued continued function (t) 

that is evaluated at N equally spaced points x1, x2, …, xN. The first and 

second derivatives of the function (t) at the time tc where c is an index 

integer, c = 1, 2, 3, …, N are given by Eqs. (A2) and (A3) respectively. 

The time interval is t = tc+1 – tc. 

 

 
1 1( ) ( )( )
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c c

t t

t td t
c N
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. (A3)  

To start the calculation one needs to input the initial conditions for the 

first two time steps. 

The force acting on the planet is given by the Law of Universal 

Gravitation and therefore, the equation of motion of the planet is 

 m a = - G MS m / r2 

Thus, the acceleration in vector form is 

 a = - (G MS / r3)  r 
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Squaring both sides      a2 =  (GMS / r3)2 r2 = (GMS / r3)2 (x2 + y2) 

Therefore, the x and y components of the acceleration are   

 ax = - (GMS / r
3) x          ay = - (GMS / r3) y 

Using eq (A3) we can approximation the position of the planet by 

 x(t + t) = -2t GMS x(t) / {x(t)2 + y(t)2}3/2 + 2x(t) – x(t - t) 

 y(t + t) = -2t GMS y(t) / {x(t)2 + y(t)2}3/2 + 2y(t) – y(t - t) 

Once, the position is known then the velocity can be calculated from eq 

(A2) 

 vx(t) = {x(t + t) – x(t - t)} / 2t         vy(t) = {y(t + t) – y(t - t)} 

/ 2t  

The acceleration is calculated from  

  ax(t) = - (GMS / r(t)3) x(t)        ay(t) = - (GMS / r(t)3) y(t)     r(t)2 = x(t)2 + 

y(t)2 

 

 

 

VISUAL PHYSICS ONLINE 

http://www.physics.usyd.edu.au/teach_res/hsp/sp/spHome.htm 

 

If you have any feedback, comments, suggestions or corrections please email: 

ian.cooper@sydney.edu.au 

Ian Cooper   School of Physics   University of Sydney 

http://www.physics.usyd.edu.au/teach_res/hsp/sp/spHome.htm

