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VISUAL PHYSICS ONLINE 

 

PRACTICAL ACTIVITY 

HOW DO THE PANETS MOVE? 
 

 

One of the most important questions historically in Physics was how the 

planets move.  Many historians consider the field of Physics to date from 

the work of Newton, and the motion of the planets was the principle 

problem Newton set out to solve.  In the process of doing this, he not only 

introduced his laws of motion and discovered the law of gravity, he also 

developed differential and integral calculus. 

 

Today, the same law that governs the motion of planets, is used by 

scientists to put satellites into orbit around the Earth and to send spacecraft 

through the solar system. 

 

How the planets move is determined by gravitational forces.  The forces of 

gravity are the only forces applied to the planets.  The gravitational forces 

between the planets are very small compared with the force due to the Sun 

since the mass of the planets are much less than the Sun's mass. Each planet 

moves almost the way the gravitational force of the Sun alone dictates, as 

though the other planets did not exist. 

 

The motion of a planet is governed by the Law of Universal Gravitation 

 

 F = G MS m / r2 

 

http://www.physics.usyd.edu.au/teach_res/hsp/sp/spHome.htm
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where G is the Universal Gravitational Constant, MS is the mass of the 

Sun, m is the mass of the planet and r is the distance from the Sun to the 

planet. 

 G = 6.6710-11 N.m2.kg2 

MS = 2.01030 kg 

 

Historically, the laws of planetary motion were discovered by the 

outstanding German astronomer Johannes Kepler (1571-1630) on the basis 

of almost 20 years of processing astronomical data, before Newton and 

without the aid of the law of gravitation. 

 

Kepler's Laws of Planetary Motion 

 

1       The path of each planet around the Sun is an ellipse with the Sun at 

one focus. 

 

2 Each planet moves so that all imaginary lines drawn from the Sun to 

the planet sweeps out equal areas in equal periods of time. 

 

3 The ratio of the squares of the periods of revolution of planets is equal 

to the ratio of the cubes of their orbital radii (mean distance from the 

Sun or length of semimajor axis, a) 
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Kepler’s First Law 

A planet describes an ellipse with the Sun at one focus.  But what kind of 

an ellipse do planets describe? It turns out they are very close to circles. 

The path of the planet nearest the Sun,  Mercury,  differs  most  from a  

circle,  but even in this case, the longest diameter is only 2% greater than 

the shortest one. Bodies other than the planets, for example, comets move 

around the Sun in greatly flattened ellipses.  

 

Since the Sun is located at one of the foci and not the centre, the distance 

from the planet to the Sun changes more noticeably. The point nearest the 

Sun is called the perihelion and the farthest point from the Sun is the 

aphelion. Half the distance from the perihelion to the aphelion is known as 

the semimajor radius, a. The other radius of the ellipse is the semiminor 

radius, b. 

 

The Path of a Planet Around the Sun is an Ellipse 

 

x2 / a2 + y2 / b2 = 1 
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Kepler's Second Law 

Each planet moves so that an imaginary line drawn from the Sun to the 

planet sweeps out equal areas in equal periods of time. This law results 

from the Law of Conservation of Angular Momentum 

                     Angular momentum = L = m v r = constant 

 

where m is the mass of the planet, r is the distance from the Sun and v is 

the tangential velocity of the planet. 

 

Angular momentum is conserved because the force acting on the orbital 

body is always directed towards the centre of the coordinate system (0,0), 

i.e., the Sun.  Thus, this force cannot exert a torque (twist) on the orbiting 

body.  Since there is zero torque acting, the orbital angular momentum 

must remain constant. 
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Since a planet moves in an elliptical orbit, the distance r is continually 

changing. As it approaches nearer the Sun the planet must speed up and as 

it gets further away from the Sun it must slow down such that the product 

 v r  =   constant. 

 

The area of each triangle (for a small time interval dt) can be expressed as 

Al = ½ (vl dt) rl          A2 = ½ (v2 dt) r2          A1 / A2 =  vl rl / v2 r2 

 

Since angular momentum must be conserved, L = m v1 rl = m v2 r2 

 A1 / A2 =  1 

 

Therefore, in equal time intervals, equal areas are swept out. 
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Kepler's Third Law 

For an orbiting planet, the centripetal force results from the gravitational 

attraction between the planet and the Sun 

 

                   Centripetal force = Gravitational force 

 

                             m v2 / a  =  G MS m / a2 

 

                             v2 = G MS / a 

 

                             v = a ,           = 2  f = 2  / T 

 

                             v2  =  (4 2 / T2 ) a2  =  G MS / a 
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Activity          Testing Kepler's Third Law 

 

What is the relationship between a planet's period and its mean distance 

from the Sun?  (A planet's mean distance from the Sun is equal to its 

semimajor radius). 

 

Kepler had been searching for a relationship between a planet's period and 

its mean distance from the Sun since his youth. Without such a relationship, 

the universe would make no sense to him.  If the Sun had the "power" to 

govern a planet's motions, then that motion must somehow depend on the 

distance between the planet and Sun, BUT HOW? 

 

By analysing the planetary data for the period and mean distance from the 

Sun, can you find the relationship? 

 

 

               Planet         Mean Distance from      Period 

                                           Sun   a (m)            T (s) 

               Mercury        5.79l010                7.60106 

               Venus           1.081011                1.94107 

               Earth           1.4961011               3.156107 

               Mars             2.281011                5.94107 

               Jupiter         7.781011                 3.74108 

               Saturn          1.431012                9.35l08 

               Uranus         2.861012                2.64109 

               Neptune       4.521012                5.22109 

               Pluto           5.901012                7.82109 
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From laboratory experiments it is possible to find a value for the 

Universal Gravitational Constant.  Its value is  

 

                           G = 6.6710-11 N.m2.kg2 

 

Draw the following graphs: 

 

 X axis Y axis 

   a                    T    

   
3/2

a                 T   

   
3

a                   
2

T  

 10log a             10log T  

 

Hence, determine the mass of the Sun MS. 

 

You can draw the graphs by hand or better, enter and plot the graphs in 

MS EXCEL. 
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 Answers  

 

MS EXCEL used for the data analysis 

 

Kepler’s Third law may be written in the form T = k an where the constants 

k and n can be determined by analysing the data. 

 

The data of the mean distance from the Sun and the corresponding period 

for each planet is plotted as a linear graph and the trendline (power) is fitted 

to the data. The equation of the fitted curve is 

 

T = 5.110-10 a1.50   (correlation coefficient = 1) 

          n = 1.5 = 3/2  

          k = 5.5110-10 s 

 

From the k value the mass of the Sun is 

 

MS = 1.951030 kg 

 



 

 

 

10 

 

 

A straight-line graph can be obtained by plotting log(T) against log(a). A 

trendline (straight line) can be fitted to the graph and the linest command 

in MS EXCEL can be used to determine the slope and intercept of the fitted 

line plus the uncertainties in the slope and intercept. The values are 

n = (1.4996 ± 0.0004) 

k = (5.51 ± 0.06) 10-10 s 

 

MS = (1.95 ± 0.04) 1030 kg 

 

The accepted value for the mass of the Sun is 1.9871010 kg. So we get 

excellent agreement between the accepted value for the mass of the Sun 

and the value from processing the measurements on the movement of the 

planets. 

Kepler's Third Law y = 5.509E-10x
1.500E+00

R
2
 = 1.000E+00

0.0E+00

1.0E+09

2.0E+09

3.0E+09

4.0E+09

5.0E+09

6.0E+09

7.0E+09

8.0E+09

9.0E+09

0.0E+00 1.0E+12 2.0E+12 3.0E+12 4.0E+12 5.0E+12 6.0E+12 7.0E+12

semi-major axis  a   (m)

p
e

ri
o

d
  

T
  

(s
)



 

 

 

11 

 

        

Testing Kepler's Third Law T =  k an     

        

Planet 

Mean 

distance 

from Sun a 

(m) 

Period T (s) 

 

log(a) log(T)   

Mercury 5.79E+10 7.60E+06  10.76 6.88   

Venus 1.08E+11 1.94E+07  11.03 7.29   

Earth 1.50E+11 3.16E+07  11.17 7.50   

Mars 2.28E+11 5.94E+07  11.36 7.77   

Jupiter 7.78E+11 3.74E+08  11.89 8.57   

Saturn 1.43E+12 9.35E+08  12.16 8.97   

Uranus 2.86E+12 2.64E+09  12.46 9.42   

Nepture 4.52E+12 5.22E+09  12.66 9.72   

Pluto 5.90E+12 7.82E+09  12.77 9.89   

  

Kepler's third Law y = 1.49964x - 9.25894
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Trendline - power   Linest - curve fitting   

n =  1.500  n =  1.4996 -9.25894  = log(k)  

k =  5.51E-10 s n =  0.0004 0.004627  =  log(k)  

    1 0.000829   

Mass of Sun  n / n % =  0.03    

G = 6.67E-11 N.m2.kg-2      

MS  = 4 2(/k2 G)  k =  5.51E-10  kmax =  5.57E-10 s 

MS  = 1.95E+30 kg    kmin =  5.45E-10 s 

        

   MS  = 42(/k2 G)   

   MS  = 1.95E+30 kg   

   min MS  = 1.99E+30 kg   

   max MS  = 1.91E+30 kg   
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The following plots were done in Matlab. From any of the straight line 

plots you can calculate the slope and then the mass of the Sun. 
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From each of the graphs you see the excellent agreement of the 

motion of the planets as described by Kepler’s Third Law. 

 

VISUAL PHYSICS ONLINE 

http://www.physics.usyd.edu.au/teach_res/hsp/sp/spHome.htm 

 

If you have any feedback, comments, suggestions or corrections please email: 

ian.cooper@sydney.edu.au 

Ian Cooper   School of Physics   University of Sydney 

http://www.physics.usyd.edu.au/teach_res/hsp/sp/spHome.htm

