

VISUAL PHYSICS ONLINE

EQUATION MINDMAPS

Equations are essential part of physics, without them, we can't start to explain our physical world and make predictions. An equation tells a story – a collection of a few symbols contains a wealth of information. Many examination questions can be answered by having an in-depth understanding of equations. To help you maximize your examination marks, you should use the equation mindmaps to gain this in-depth understanding. You need to commit to memory much of the information contained in the equation mindmaps so that you can appreciate the story told by each equation.

- State what the symbols represent (meaning & interpretation),
 S.I. units, other units, typical values, vector or scalar, positive or negative quantity.
- A visualisation of what the equation is about, is it a definition or a law, when is it applicable, comments and an interpretation.
- Alternative forms of the equation.
- Graphical representations of the equation.
- Numerical examples.

MECHANICS (Kinematics and Dynamics)

$$v_{av} = \frac{\Delta r}{\Delta t}$$
Average velocity
$$v_x = \frac{dx}{dt}$$
Instantaneous velocity in X
direction
$$a_{avg} = \frac{\Delta v}{\Delta t} = \frac{v - u}{t}$$
Average acceleration
$$a = \frac{dv}{dt}$$
Instantaneous acceleration in X
direction
$$\sum \vec{F} = m \vec{a}$$
Newton's Second Law
$$\vec{a} = \frac{\sum \vec{F}}{m}$$
acceleration
$$F = mg$$
Weight of an object
$$F_c = m \frac{v^2}{r}$$
Centripetal force: uniform circular
motion
$$a_c = \frac{F_c}{m} = \frac{v^2}{r}$$
Centripetal acceleration
$$\vec{F}_{AB} = -\vec{F}_{BA}$$
Newton's Third Law

$$F_{rocket} = -F_{gases}$$
 eg rocket propulsion

$\vec{p} = m\vec{v}$	Momentum of a moving object
impulse $\vec{J} = \vec{F}t$	Impulse of a force <i>F</i> acting for a time interval <i>t</i>
$J = F \Delta t = mv - mu$	Impulse = change in momentum
$\sum \vec{F} = 0 \Longrightarrow \Delta \vec{p} = 0$	Law of Conservation of momentum

$$W = F s$$
Work done by a force
during a displacement
(force and displacement
in same direction [1D] $E_K = K = \frac{1}{2}mv^2$ Kinetic energy of a
moving object $W = F \Delta s = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$ Work done = change in
KE [1D] only $W = qV$ Work done on a charge
in an electric field $E_K = K = \frac{1}{2}mv^2 = eV$ Gain in KE electron due
to a constant
accelerating voltage

$$v = u + at \qquad u \equiv v_0$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

$$v_{av} = \frac{u + v}{2}$$

$$s = v_{av}t = \frac{u + v}{2}t$$

Equation for uniform
accelerated motion in one-
dimension

$$a = \text{constant}$$

$$+ \rightarrow a_{x} = 0$$

$$u_{x} = u \cos \theta$$

$$v_{x} = u_{x} \quad x = u_{x} t$$

$$+ \uparrow a_{y} = -g$$

$$u_{y} = u \sin \theta$$

$$y = u_{y} + a_{y} t$$

$$v_{y}^{2} = u_{y}^{2} + 2a_{y} \Delta y$$

$$y = u_{y} t + \frac{1}{2}a_{y} t^{2}$$

$$y = \frac{u_{y} + v_{y}}{2} t$$

$$s^{2} = s_{x}^{2} + s_{y}^{2} \quad \tan \theta_{s} = \frac{s_{y}}{s_{x}}$$

$$v^{2} = v_{x}^{2} + v_{y}^{2} \quad \tan \theta_{v} = \frac{v_{y}}{v_{x}}$$

►
$$F = \frac{G m_1 m_2}{r^2}$$
 Gravitational force
 $g_{planet} = \frac{G M_{planet}}{R_{planet}}$ Acceleration due to gravity
at surface of a planet
 $E_p = U = -G \frac{m_1 m_2}{r}$ Gravitational potential
energy
 $E_p = U = mgh$ Gravitational potential
energy near Earth's surface
 $g = \frac{G M_E}{r^2} = \frac{G M_E}{(R_E + h)^2}$ Acceleration due to gravity
 $T = 2\pi \sqrt{\frac{L}{g}}$ Period of pendulum $\rightarrow g$

$$\frac{r^{3}}{T^{2}} = \frac{GM}{4\pi^{2}}$$
Kepler's Third Law for satellite
motion
$$\frac{r_{1}^{3}}{T_{1}^{2}} = \frac{r_{2}^{3}}{T_{2}^{2}}$$

$$\frac{r_{1}^{3}}{T_{1}^{2}} = \frac{r_{2}^{3}}{T_{2}^{2}}$$

$$T_{2} = T_{1} \left(\frac{r_{2}}{r_{1}}\right)^{\frac{3}{2}}$$

$$v_{orb} = \sqrt{\frac{GM}{r}}$$
orbital velocity
$$T = \frac{2\pi r}{v_{orb}}$$
orbital period
geostationary satellite
T = 24 hours
$$v_{esc} = \sqrt{\frac{2GM}{r}}$$
escape velocity

SPECIAL RELATIVITY

ELECTRICITY

MAGNETISM

$\frac{F}{L} = k \frac{I_1 I_2}{d}$	Magnetic force between two parallel conductors
$ = BIL\sin\theta $	Magnetic force on a conductor
$B = \frac{\mu_0 I}{2 \pi r}$	Magnetic field surrounding a long straight conductor
$\tau = F d$ $\tau = n B I A \cos \theta$	Torque Torque on a coil in a magnetic field
$\Phi_{B} = B A \cos \theta$ $\varepsilon = -\frac{\Delta \Phi_{B}}{\Delta t}$ $\varepsilon = -\frac{d \Phi_{B}}{dt}$	Magnetic flux average induced emf induced emf
$\Phi_{B} = BA\cos(\omega t)$ $\varepsilon = \omega BA\sin(\omega t)$	$\theta = \omega t$
$\varepsilon_{battery} = I R + \varepsilon_{back}$	electric motor: back emf $\ arepsilon_{_{back}}$

$$\frac{V_p}{V_s} = \frac{n_p}{n_s}$$
Transformer equation:
step up or step down
voltages
$$V_s = \frac{n_s}{n_p} V_p \quad I_s = \frac{n_p}{n_s} I_p$$
ideal transformer
$$P_s = P_p \quad V_s I_s = V_p I_p$$

$$Power loss (eddy currents - transformer, induction heating; transmission lines)$$

$$F = qvB\sin\theta$$
 Force on a charged particle
moving in a magnetic field
$$E = \frac{F}{q}$$
 Electric field
$$E = \frac{V}{d}$$
 Electric field (constant) between
two parallel charged plates

NATURE OF LIGHT

C	E = h f	Energy	of a photon
	$c = f \lambda$ $\frac{1}{2}mv^2 = eV$	Speed Speed radiatio	of light of electromagnetic on Gain in KE of electron due to accelerating voltage
	$h f = \frac{1}{2}mv^{2} + W$ $h f = \frac{1}{2}mv_{\text{max}}^{2} + W$ $\frac{1}{2}mv_{\text{max}}^{2} = h f - W$, min , min	Photoelectric Effect
	$eV_s = \frac{1}{2}mv_{\text{max}}^2$ $V_s = \frac{hf}{e} - \frac{W_{\text{min}}}{e}$		Stopping voltage
	$eV_s = \frac{1}{2}mv_{\text{max}}^2 = 0$ $h f_c = W_{\text{min}} f_c = -\frac{1}{2}$	$rac{W_{\min}}{h}$	Cut-off (critical) frequency

THE ATOM

•
$$n \lambda = d \sin \theta$$

 $label{eq:alpha}$
 $label{eq:al$

$$\lambda = \frac{h}{mv}$$

$$E = h f \quad c = f \lambda \quad p = \frac{h}{\lambda}$$

$$\lambda = \frac{h}{p} \quad p = \frac{h}{\lambda}$$

$$\Delta x \Delta p \ge \frac{h}{4\pi}$$
Matter wave
$$de \text{ Broglie wavelength} de \text{ Broglie relationship}$$
Photon
$$Matter wave$$

$$Heisenberg Uncertainty$$
Principle

The NUCLUES

•
$$\Delta m = M_{\text{products}} - M_{\text{reactants}}$$
 Mass defect
 $E = \gamma m c^2$ Einstein –
mass/energy
 ${}^9Be_4 + ^4He_2 \rightarrow {}^{12}C_6 + ^1n_0$ Chadwick
discovers neutron
Beta plus decay
 $p^+ \rightarrow n + e^+ + v_e$ Beta decay
 $p^+ \rightarrow n + e^+ + v_e$ neutrino
 ${}^{19}Ne_{10} \rightarrow {}^{19}F_9 + e^+ + v_e$
 $e^+ = \beta^+$ $e^+ = \beta^+$ $p[d(-1/3) u(+2/3) u(+2/3)]$
Deta minus decay
 $n \rightarrow p^+ + e^- + \overline{v}_e$ Alpha decay
 ${}^4He_2 = \alpha$ Alpha decay

