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Chapter �

Introduction into the group

theory

��� Introduction

In these lectures on group theory and its application to the particle physics
there have been considered problems of classi�cation of the particles along
representations of the unitary groups� calculations of various characteristics
of hadrons� have been studied in some detail quark model� First chapter are
dedicated to short introduction into the group theory and theory of group
representations� In some datails there are given unitary groups SU��	 and
SU��	 which play eminent role in modern particle physics� Indeed SU��	
group is aa group of spin and isospin transforation as well as the base of
group of gauge transformations of the electroweak interactons SU��	�U��	
of the Salam� Weinberg model� The group SU��	 from the other side is
the base of the model of unitary symmetry with three �avours as well as
the group of colour that is on it stays the whole edi�ce of the quantum
chromodynamics�

In order to aknowledge a reader on simple examples with the group theory
formalism mass formulae for elementary particles would be analyzed in de�
tail� Other important examples would be calculations of magnetic moments
and axial�vector weak coupling constants in unitary symmetry and quark
models� Formulae for electromagnetic and weak currents are given for both
models and problem of neutral currents is given in some detail� Electroweak

�



current of the Glashow�Salam�Weinberg model has been constructed� The
notion of colour has been introduced and simple examples with it are given�
Introduction of vector bosons as gauge �elds are explained� Author would
try to write lectures in such a way as to enable an eventual reader to perform
calculations of many properties of the elementary particles by oneself�

��� Groups and algebras� Basic notions�

De�nition of a group
Let be a set of elements G g�� g�� ���� gn �� with the following prop�

erties�
�� There is a multiplication law gigj � gl� and if gi� gj � G� then

gigj � gl � G� i� j� l � �� �� ���� n�
�� There is an associative law gi�gjgl	 � �gigj	gl�
�� There exists a unit element e� egi � gi� i � �� �� ���� n�
�� There exists an inverse element g��i � g��i gi � e� i � �� �� ���� n�
Then on the set G exists the group of elements g�� g�� ���� gn �
As a simple example let us consider rotations on the plane� Let us de�ne

a set � of rotations on angles ��
Let us check the group properties for the elements of this set�
�� Multiplication law is just a summation of angles� �� � �� � �� � ��
�� Associative law is written as ��� � ��	 � �� � �� � ��� � ��	�
�� The unit element is the rotation on the angle �����n	�
�� The inverse element is the rotation on the angle ������n	�
Thus rotations on the plane about some axis perpendicular to this plane

form the group�
Let us consider rotations of the coordinate axes x� y� z� which de�ne De�

cartes coordinate system in the ��dimensional space at the angle �� on the
plane xy around the axis z�

�
B� x�

y�

z�

�
CA �

�
B� cos�� sin�� �
�sin�� cos�� �
� � �

�
CA
�
B� x

y
z

�
CA � R����	

�
B� x

y
z

�
CA ����	

Let � be an in�nitesimal rotation� Let is expand the rotation matrix R���	

�



in the Taylor series and take only terms linear in ��

R���	 � R���	 �
dR�

d� ���
��O���	 � � � iA���O���	� ����	

where R���	 is a unit matrix and it is introduced the matrix

A� � �idR�

d� ���
�

�
B� � �i �

i � �
� � �

�
CA ����	

which we name �generator of the rotation around the �rd axis� �or z�axis	�
Let us choose � � ��	n then the rotation on the angle �� could be obtained
by n�times application of the operator R���	� and in the limit we have

R����	 � lim
n���R����	n	�

n � lim
n���� � iA���	n�

n � eiA���� ����	

Let us consider rotations around the axis U�

�
B� x�

y�

z�

�
CA �

�
B� cos�� � sin��

� � �
�sin�� � cos��

�
CA
�
B� x

y
z

�
CA � R����	

�
B� x

y
z

�
CA � ����	

where a generator of the rotation around the axis U is introduced�

A� � �idR�

d� ���
�

�
B� � � �i
� � �
i � �

�
CA
�
B� x

y
z

�
CA � ���
	

Repeat it for the axis x�

�
B� x�

y�

z�

�
CA �

�
B� � � �
� cos�� sin��
� �sin�� cos��

�
CA
�
B� x

y
z

�
CA � R����	

�
B� x

y
z

�
CA � ����	

where a generator of the rotation around the axis xU is introduced�

A� � �idR�

d� ���
�

�
B� � � �
� � �i
� i �

�
CA ����	

�



Now we can write in the ��dimensional space rotation of the Descartes coor�
dinate system on the arbitrary angles� for example�

R����	R����	R����	 � eiA���eiA���eiA���

However� usually one de�nes rotation in the ��space in some other way� name�
ly by using Euler angles�

R�
� �� �	 � eiA��eiA��eiA��

functions	�
�Usually Cabibbo�Kobayashi�Maskawa matrix is chosen as VCKM�

�

�
B� c��c�� s��c�� s��e

�i���

�s��c�� � c��s��s��e
i��� c��c�� � s��s��s��e

i��� s��c��
s��s�� � c��c��s��e

i��� �c��s�� � s��c��s��e
i��� c��c��

�
CA �

Here cij � cos�ij � sij � sin�ij� �i� j � �� �� �	� while �ij � generalized Cabibbo
angles� How to construct it using Eqs������ ���� ���	 and setting �� � ��	

Generators Al� l � �� �� �� satisfy commutation relations

Ai �Aj �Aj �Ai � �Ai� Aj� � i�ijkAk� i� j� k � �� �� ��

where �ijk is absolutely antisymmetric tensor of the �rd rang� Note that
matrices Al� l � �� �� �� are antisymmetric� while matrices Rl are orthogonal�
that is� RT

i Rj � ij� where index T means �transposition�� Rotations could
be completely de�ned by generators Al� l � �� �� ��� In other words� the
group of ��dimensional rotations �as well as any continuous Lie group up
to discrete transformations	 could be characterized by its algebra � that
is by de�nition of generators Al� l � �� �� ��� its linear combinations and
commutation relations�

De�nition of algebra
L is the Lie algebra on the �eld of the real numbers if�
�i� L is a linear space over k �for x � L the law of multipli�

cation to numbers from the set K is de�ned�� �ii� For x� y �L the
commutator is de�ned as �x� y�� and �x� y� has the following prop�
erties� �
x� y� � 
�x� y�� �x� 
y� � 
�x� y� at 
 � K and �x� � x�� y� �
�x�� y� � �x�� y��

�x� y� � y�� � �x� y�� � �x� y�� for all x� y �L�
�x� x� � � for all x� y �L�
��x� y�z� � ��y� z�x� � ��z� x�y� � � �Jacobi identity��






��� Representations of the Lie groups and

algebras

Before a discussion of representations we should introduce two notions� iso�
morphism and homomorphism�

De�nition of isomorphism and homomorphism
Let be given two groups� G and G��
Mapping f of the group G into the group G� is called isomorphism or

homomorphis

If f�g�g�	 � f�g�	f�g�	 for any g�g� � G�

This means that if f maps g� into g�� and g� W g
�
�� then f also maps g�g� into

g��g
�
��
However if f�e	 maps e into a unit element in G�� the inverse in general

is not true� namely� e� from G� is mapped by the inverse transformation f��

into f���e�	� named the core �orr nucleus	 of the homeomorphism�
If the core of the homeomorphism is e from G such one�to�one homeo�

morphism is named isomorphism�
De�nition of the representation
Let be given the group G and some linear space L� Representa�

tion of the group G in L we call mapping T � which to every element
g in the group G put in correspondence linear operator T �g	 in the
space L in such a way that the following conditions are ful�lled�

��� T �g�g�	 � T �g�	T �g�	 for all g�� g� � G�
��� T �e	 � �� where � is a unit operator in L�
The set of the operators T �g	 is homeomorphic to the group G�
Linear space L is called the representation space� and operators T �g	 are

called representation operators� and they map one�to�one L on L� Because of
that the property ��	 means that the representation of the group G into L is
the homeomorphism of the group G into the G� � group of all linear operators
in W L� with one�to�one correspondence mapping of L in L	� If the space L
is �nite�dimensional its dimension is called dimension of the representation
T and named as nT � In this case choosing in the space L a basis e�� e�� ���� en�

�



it is possible to de�ne operators T �g	 by matrices of the order n�

t�g	 �

�
BBB�

t�� t�� ��� t�n
t�� t�� ��� t�n
��� ��� ��� ���
tn� tn� ��� tnn

�
CCCA �

T �g	ek �
X

tij�g	ej� t�e	 � �� t�g�g�	 � t�g�	t�g�	�

The matrix t�g	 is called a representation matrix T� If the group G itself
consists from the matrices of the �xed order� then one of the simple represen�
tations is obtained at T �g	 � g � identical or� better� adjoint representation	�

Such adjoint representation has been already considered by us above and
is the set of the orthogonal ��� matrices of the group of rotations O��	 in
the ��dimensional space� Instead the set of antisymmetrical matrices Ai� i �
�� �� � forms adjoint representation of the corresponding Lie agebra� It is
obvious that upon constructing all the represetations of the given Lie algebra
we indeed construct all the represetations of the corresponding Lie group �up
to discrete transformations	�

By the transformations of similarity PODOBIQ T ��g	 � A��T �g	A it is
possible to obtain from T �g	 representation T ��g	 � g which is equivalent to
it but� say� more suitable �for example� representation matrix can be obtained
in almost diagonal form	�

Let us de�ne a sum of representations T �g	 � T��g	 � T��g	 and say that
a representation is irreducible if it cannot be written as such a sum � For the
Lie group representations is de�nition is su�ciently correct	�

For search and classi�cation of the irreducible representation �IR	 Schurr�s
lemma plays an important role�

Schurr�s lemma� Let be given two IR�s� t��g	 and t��g	� of the group G�
Any matrix w � such that wt��g	 � t��g	B for all g � G either is equal to �
�if t��g	� and t��g	 are not equivalent� or KRATNA is proportional to the unit
matrix �I�

Therefore if B �� �I exists which commutes with all matrices of the given
representation T �g	 it means that this T �g	 is reducible� Really�� if T �g	 is
reducible and has the form

T �g	 � T��g	 � T��g	 �

�
T��g	 �
� T��g	

�
�

�



then

B �

�
��I

� �
� ��I

�

�
�� �I

and �T �g	� B� � ��
For the group of rotations O��	 it is seen that if �Ai� B� � �� i � �� �� � then

�Ri� B� � ���i�e�� for us it is su�cient to �nd a matrix B commuting with all
the generators of the given representation� while eigenvalues of such matrix
operator B can be used for classi�cations of the irreducible representations
�IR�s	� This is valid for any Lie group and its algebra�

So� we would like to �nd all the irreducible representations of �nite dimen�
sion of the group of the ��dimensional rotations� which can be be reduced to
searching of all the sets of hermitian matrices J����� satisfying commutation
relations

�Ji� Jj� � i�ijkJk�

There is only one bilinear invariant constructed from generators of the algebra
�of the group	� �J� � J�

� � J�
� � J�

� � for which � �J
�� Ji� � �� i � �� �� �� So IR�s

can be characterized by the index j related to the eigenvalue of the operator
�J��
In order to go further let us return for a moment to the de�nition of the

representation� Operators T �g	 act in the linear n�dimensional space Ln and
could be realized by n�nmatrices where n is the dimension of the irreducible
representation� In this linear space n�dimensional vectors �v are de�ned and
any vector can be written as a linear combination of n arbitrarily chosen
linear independent vectors �ei� �v �

Pn
i�� vi�ei� In other words� the space Ln

is spanned on the n linear independent vectors �ei forming basis in Ln� For
example� for the rotation group O��	 any ��vector can be de�nned� as we
have already seen by the basic vectors

ex �

�
B� �
�
�

�
CA � ey �

�
B� �
�
�

�
CA � ez �

�
B� �
�
�

�
CA

as �x �

�
B� x

y
z

�
CA or �x � xex�yey�zez� And the ��dimensional representation �

adjoint in this case	 is realized by the matrices Ri� i � �� �� �� We shall write
it now in a di�erent way�





Our problem is to �nd matrices Ji of a dimension n in the basis of n
linear independent vectrs� and we know� �rst� commutation reltions �Ji� Jj� �

i�ijkJk� and� the second� that IR�s can be characterized by �J�� Besides� it is
possible to perform similarity transformation of the Eqs��������
�����	 in such
a way that one of the matrices� say J�� becomes diagonal� Then its diagonal
elements would be eigenvalues of new basical vectors�

U �
�p
�

�
B� � � �i

� � � i �
�i � �

�
CA � U�� �

�p
�

�
B� � � i
� � � i �
i � �

�
CA ���	

UA�U
�� � �

�
B� � � �
� � �
� � ��

�
CA

U�A� �A�	U
�� � �

�
B� � �i �

i � �i
� i �

�
CA

U�A� �A�	U
�� � �

�
B� � � �
� � �
� � �

�
CA

In the case of the ��dimensional representation usually one chooses

J� �
�

�

�
B�

�
p
� �p

� �
p
�

�
p
� �

�
CA �����	

J� �
�

�

�
B� � �ip� �

i
p
� � �ip�
� i

p
� �

�
CA �����	

J� �

�
B� � � �
� � �
� � ��

�
CA � �����	

Let us choose basic vectors as

j� � � ��
�
B� �
�
�

�
CA � j� � ��

�
B� �
�
�

�
CA � j�� � ��

�
B� �
�
�

�
CA �

��



and
J�j� � � �� �j� � � �� J�j� � �� �j� � � ��

J�j�� � �� �j� � � � �

In the theory of angular momentum these quantities form basis of the rep�
resentation with the full angular momentum equal to �� But they could be
identi�ed with ��vector in any space� even hypothetical one� For example�
going a little ahead� note that triplet of ��mesons in isotopic space could be
placed into these basic vectors�

��� ��� �� � j�� �� j� � � �� j�� �� j� � � �

Let us also write in some details matrices for J � �� i�e�� for the representation
of the dimension n � �J � � � ��

J� �

�
BBBBBBBB�

� � � � �

� �
q
�	� � �

�
q
�	� �

q
�	� �

� �
q
�	� � �

� � � � �

�
CCCCCCCCA

�����	

J� �

�
BBBBBBBB�

� �i � � �

i � �i
q
�	� � �

� i
q
�	� � �i

q
�	� �

� � i
q
�	� � �i

� � � i �

�
CCCCCCCCA

�����	

J� �

�
BBBBBB�

� � � � �
� � � � �
� � � � �
� � � �� �
� � � � ��

�
CCCCCCA

�����	

As it should be these matrices satisfy commutation relations �Ji� Jj� � i�ijkJk� i� j� k �
�� �� �� i�e�� they realize representation of the dimension � of the Lie algebra
corresponding to the rotation group O��	�

��



Basic vectors can be chosen as�

j� � � ��

�
BBBBBB�

�
�
�
�
�

�
CCCCCCA
� j� � � ��

�
BBBBBB�

�
�
�
�
�

�
CCCCCCA
� j� � ��

�
BBBBBB�

�
�
�
�
�

�
CCCCCCA
�

j� � � ��

�
BBBBBB�

�
�
�
�
�

�
CCCCCCA
� j�� � ��

�
BBBBBB�

�
�
�
�
�

�
CCCCCCA
�

J�j���� �� ��j���� �� J�j���� �� ��j���� �� J�j�� � �� �j�� � �
� J�j���� �� ��j���� �� J�j���� �� ��j���� � �

Now let us formally put J � �	� although strictly speaking we could
not do it� The obtained matrices up to a factor �	� are well known Pauli
matrices�

J� �
�

�

�
� �
� �

�
�

J� �
�

�

�
� �i
i �

�

J� �
�

�

�
� �
� ��

�

These matrices act in a linear space spanned on two basic ��dimensional
vectors �

�
�

�
�

�
�
�

�
�

There appears a real possibility to describe states with spin �or isospin	
���� But in a correct way it would be possible only in the framework of
another group which contains all the representations of the rotation group
O��	 plus PL�S representations corresponding to states with half�integer spin
�or isospin� for mathematical group it is all the same	� This group is SU��	�

��



��� Unitary unimodular group SU���

Now after learning a little the group of ��dimensional rotations in which
dimension of the minimal nontrivial representation is � let us consider more
complex group where there is a representation of the dimension �� For this
purpose let us take a set of � � � unitary unimodular U �i�e�� U yU � ��
detU � �� Such matrix U can be written as

U � ei	kak�

�k� k � �� �� � being hermitian matrices� �
y
k � �k� chosen in the form of Pauli

matrices

�� �

�
� �
� �

�
�

�� �

�
� �i
i �

�

�� �

�
� �
� ��

�
�

and ak� k � �� �� � are arbitrary real numbers� The matrices U form a group
with the usual multiplying law for matrices and realize identical �adjoint	
represenation of the dimension � with two basic ��dimensional vectors�

Instead Pauli matrices have the same commutation realtions as the gen�
erators of the rotation group O��	� Let us try to relate these matrices with
a usual ��dimensional vector �x � �x�� x�� x�	� For this purpose to any vector
�x let us attribute SOPOSTAWIM a quantity X � ���x� �

Xa
b �

�
x� x� � ix�

x� � ix� �x�

�
� a� b � �� �� ����
	

Its determinant is detXa
b � ��x�� that is it de�nes square of the vector length�

Taking the set of unitary unimodular matrices U � U yU � �� detU � � in ��
dimensional space� let us de�ne

X � � U yXU�

and detX � � det�U yXU	 � detX � ��x�� We conclude that transformations
U leave invariant the vector length and therefore corresponds to rotations in

��



the ��dimensional space� and note that �U correspond to the same rotation�
Corresponding algebra SU��	 is given by hermitian matrices �k� k � �� �� ��
with the commutation relations

��i� �j� � �i�ijk�k

where U � ei	kak �
And in the same way as in the group of ��rotations O��	 the representation

of lowest dimension � is given by three independent basis vectors�for example
� x�y�z� in SU��	 �� dimensional representation is given by two independent
basic spinors q�� 
 � �� � which could be chosen as

q� �

�
�
�

�
� q�

�
�
�

�
�

The direct product of two spinors q� and q� can be expanded into the sum
of two irreducible representations �IR�s	 just by symmetrizing and antisym�
metrizing the product�

q� � q� �
�

�
fq�q� � q�q�g� �

�
�q�q� � q�q�� � T f��g� T �����

Symmetric tensor of the �nd rank has dimension dnSS � n�n � �		� and for
n � � d�SS � � which is seen from its matrix representation�

T f��g �

�
T�� T��
T�� T��

�

and we have taken into account that Tf��g � Tf��g�
Antisymmetric tensor of the �nd rank has dimension dnAA � n�n � �		�

and for n � � d�AA � � which is also seen from its matrix representation�

T ���� �

�
� T��

�T�� �

�

and we have taken into account that T���� � �T���� and T���� � �T���� � ��
Or instead in values of IR dimensions�

�� � � � � ��

��



According to this result absolutely antisymmetric tensor of the �nd rank ���
���� � ���� � �	 transforms also as a singlet of the group SU��	 and we can
use it to contract SU��	 indices if needed� This tensor also serves to uprise
and lower indices of spinors and tensors in the SU��	�

����� � u���u
�
����� �

��� � u��u
�
���� � u��u

�
���� � �u

�
�u

�
� � u��u

�
�	��� � DetU��� � ���

as DetU � �� �The same for ����	

��� SU ��� as a spinor group

Associating q� with the spin functions of the entities of spin ���� q� � j 	i
and q� � j 
i being basis spinors with ���� and ���� spin projections�
correspondingly� �baryons of spin ��� and quarks as we shall see later	 we
can form symmetric tensor T f��g with three components

T f��g � q�q� � j 		i�

T f��g �
�p
�
�q�q� � q�q�	 � �p

�
j�	
 � 
		i�

T f��g � q�q� � j 

i�
and we have introduced �	

p
� to normalize this component to unity�

Similarly for antisymmetric tensor associating again q� with the spin
functions of the entities of spin ��� let us write the only component of a
singlet as

T ���� �
�p
�
�q�q� � q�q�	 � �p

�
j�	
 � 
		i� �����	

and we have introduced �	
p
� to normalize this component to unity�

Let us for example form the product of the spinor q� and its conjugate
spinor q� whose basic vectors could be taken as two rows �� �	 and �� �	�
Now expansion into the sum of the IR�s could be made by subtraction of a
trace �remind that Pauli matrices are traceless	

q� � q� � �q
�q� � �

�
��q

�q�	 �
�

�
��q

�q� � T �
� � ��I�

��



where T �
� is a traceless tensor of the dimension dV � �n

���	 corresponding to
the vector representation of the group SU��	 having at n � � the dimension
�� I being a unit matrix corresponding to the unit �or scalar	 IR� Or instead
in values of IR dimensions�

�� � � � � ��

The group SU��	 is so little that its representations T f��g and T �
� corresponds

to the same IR of dimension � while T ���� corresponds to scalar IR together
with ��I� For n �� � this is not the case as we shall see later�

One more example of expansion of the product of two IR�s is given by
the product

T �ij� � qk �

�
�

�
�qiqjqk � qjqiqk � qiqkqj � qjqkqi � qkqjqi � qkqiqj	 � �����	

�

�
�qiqjqk � qjqiqk � qiqkqj � qjqkqi � qkqjqi � qkqiqj	 �

� T �ikj� � T �ik�j

or in terms of dimensions�

n�n� �		� � n �
n�n� � �n � �	



�
n�n� � �	

�
�

For n � � antisymmetric tensor of the �rd rank is identically zero� So we
are left with the mixed�symmetry tensor T �ik�j of the dimension � for n � ��
that is� which describes spin ��� state� It can be contracted with the the
absolutely anisymmetric tensor of the �nd rank eik to give

eikT
�ik�j � tjA�

and tjA is just the IR corresponding to one of two possible constructions of
spin ��� state of three ��� states �the two of them being antisymmetrized	�
The state with the sz � ��	� is just

t�A �
�p
�
�q�q� � q�q�	q� � �p

�
j 	
	 � 
		i� ����	

�Here q� �	� q� �
�	

�




The last example would be to form a spinor IR from the product of the
symmetric tensor T fikg and a spinor qj�

T fijg � qk �

�
�

�
�qiqjqk � qjqiqk � qiqkqj � qjqkqi � qkqjqi � qkqiqj	 � �����	

�

�
�qiqjqk � qjqiqk � qiqkqj � qjqkqi � qkqjqi � qkqiqj	 �

� T fikjg � T fikgj

or in terms of dimensions�

n�n� �		� � n �
n�n� � �n� �	



�
n�n� � �	

�
�

Symmetric tensor of the �th rank with the dimension � describes the state
of spin S����� ��S��	��� Instead tensor of mixed symmetry describes state
of spin ��� made of three spins ����

eijT
fikgj � T k

S �

T j
S is just the IR corresponding to the �nd possible construction of spin ���
state of three ��� states �with two of them being symmetrized	� The state
with the sz � ��	� is just

T �
S �

�p


�e���q

�q�q� � e���q
�q� � q�q�	q� � �����	

� �p


j� 		
 � 	
	 � 
		i�

��



��	 Isospin group SU ���I

Let us consider one of the important applications of the group theory and
of its representations in physics of elementary particles� We would discuss
classi�cation of the elementary particles with the help of group theory� As
a simple example let us consider proton and neutron� It is known for years
that proton and neutron have quasi equal masses and similar properties as
to strong �or nuclear	 interactions� That�s why Heisenberg suggested to con�
sider them one state� But for this purpose one should �nd the group with
the �lowest	 nontrivial representation of the dimension �� Let us try �with
Heisenberg	 to apply here the formalism of the group SU��	 which has as
we have seen ��dimensional spinor as a basis of representation� Let us intro�
duce now a group of isotopic transformations SU��	I � Now de�ne nucleon
as a state with the isotopic spin I � �	� with two projections � proton with
I� � ��	� and neutron with I� � ��	� 	 in this imagined �isotopic space�
practically in full analogy with introduction of spin in a usual space� Usually
basis of the ��dimensional representation of the group SU��	I is written as
a isotopic spinor �isospinor	

N �

�
p
n

�
�

what means that proton and neutron are de�ned as

p �

�
�
�

�
� n �

�
�
�

�
�

Representation of the dimension � is realized by Pauli matrices �� � �k� k �
�� �� � � instead of symbols �i� i � �� �� � which we reserve for spin ��� in usual
space	� Note that isotopic operator �� � �	���� � i��	 transforms neutron
into proton � while �� � �	�����i��	 instead transforms proton into neutron�

It is known also isodoublet of cascade hyperons of spin ��� ���� and
masses � ���� MeV� It is also known isodoublet of strange mesons of spin �
K��� and masses � �� MeV and antidublet of its antiparticles �K����

And in what way to describe particles with the isospin I � �� Say� triplet
of ��mesons ��� ��� �� of spin zero and negative parity �pseudoscalar mesons	
with masses m���	 � ��� �
�� � �� ���� MeV� m���	 � ���� �� � �� ���

MeV and practically similar properties as to strong interactions�

��



In the group of �isotopic	 rotations it would be possible to de�ne isotopic
vector �� � ���� ��� ��	 as a basis �where real pseudoscalar �elds ���� are relat�
ed to charged pions �� by formula �� � �� � i��� and �� � ��	� generators
Al� l � �� �� �� as the algebra representation and matrices Rl� l � �� �� � as the
group representation with angles �k de�ned in isotopic space� Upon using
results of the previous section we can attribute to isotopic triplet of the real
�elds �� � ���� ��� ��	 in the group SU��	I the basis of the form

�ab �

�
��	

p
� ��� � i��		

p
�

��� � i��		
p
� ���	

p
�

�
�
� �p

�
�� ��

�� � �p
�
��

�
�

where charged pions are described by complex �elds �� � ��� � i��		
p
��

So� pions can be given in isotopic formalism as ��dimensional matrices�

�� �

�
� �
� �

�
� �� �

�
� �
� �

�
� �� �

� �p
�

�

� � �p
�

�
�

which form basis of the representation of the dimension � whereas the rep�
resentation itself is given by the unitary unimodular matrices � � � U�

In a similar way it is possible to describe particles of any spin with the
isospin I � �� Among meson one should remember isotriplet of the vector
�spin �	 mesons ���� with masses � �
� MeV�

� �p
�
�� ��

�� � �p
�
��

�
� �����	

Among particles with half�integer spin note� for example� isotriplet of strange
hyperons found in early 
��s with the spin ��� and masses ���� MeV �� �

which can be writen in the SU��	 basis as

� �p
�
 �  �

 � � �p
�
 �

�
� � �����	

Representation of dimension � is given by the same matrices U �
Let us record once more that experimentally isotopic spin I is de�ned as

a number of particles N � ��I��	 similar in their properties� that is� having
the same spin� similar masses �equal at the level of percents	 and practically
identical along strong interactions� For example� at the mass close to ����

�



MeV it was found only one particle of spin ��� with strangeness S��� � it is
hyperon ! with zero electric charge and mass ����� 
���� �� MeV� Naturally�
isospin zero was ascribed to this particle� In the same way isospin zero was
ascribed to pseudoscalar meson �����	�

It is known also triplet of baryon resonances with the spin ���� strangness
S��� and masses M� �������		 � ����� � � �� � m�w� M� �������		 �
����� � � �� � m�w� M� �������		 � ����� � � �� � m�w� �resonances are
elementary particles decaying due to strong interactions and because of that
having very short times of life� one upon a time the question whether they
are �elementary� was discussed intensively	  ���������	 � !�������� � �"	
or  ���������	 �  ���� � �"	 �one can �nd instead symbol Y �

� �����	 for
this resonance	�

It is known only one state with isotopic spin I � �	� �that is on exper�
iment it were found four practically identical states with di�erent charges	
� a quartet of nucleon resonances of spin J � �	� #�������	� #������	�
#������	� #������	� decaying into nucleon and pion �measured mass di�er�
enceM	� �M	�� ������� MeV	� � We can use also another symbolN������	�	
There are also heavier �replics� of this isotopic quartet with higher spins�

In the system �������� it was found only two resonances with spin ���
�not measured yet	 ����� with masses � ���� MeV� so they were put into
isodublet with the isospin I � �	��

Isotopic formalism allows not only to classify practically the whole set of
strongly interacting particles �hadrons	 in economic way in isotopic multiplet
but also to relate various decay and scattering amplitudes for particles inside
the same isotopic multiplet�

We shall not discuss these relations in detail as they are part of the
relations appearing in the framework of higher symmetries which we start to
consider below�

At the end let us remind Gell�Mann$Nishijima relation between the par�
ticle charge Q� �rd component of the isospin I� and hypercharge Y � S�B�
S being strangeness� B being baryon number ��� for baryons� �� for an�
tibaryons� � for mesons	�

Q � I� �
�

�
Y�

As Q is just the integral over �th component of electromagnetic current� it
means that the electromagnetic current is just a superposition of the �rd com�
ponent of isovector current and of the hypercharge current which is isoscalar�

��



��
 Unitary symmetry group SU���

Let us take now more complex Lie group� namely group of ��dimensional
unitary unimodular matrices which has played and is playing in modern
particle physics a magni�cient role� This group has already � parameters�
�An arbitrary complex ��� matrix depends on �� real parameters� unitarity
condition cuts them to  and unimodularity cuts one more parameter�	

Transition to ��parameter group SU��	 could be done straightforwardly
from ��parameter group SU��	 upon changing ��dimensional unitary uni�
modular matrices U to the ��dimensional ones and to the corresponding
algebra by changing Pauli matrices �k� k � �� �� � to Gell�Mann matrices
��� 
 � �� ��� ��

�� �

�
B� � � �
� � �
� � �

�
CA �� �

�
B� � �i �

i � �
� � �

�
CA �����	

�� �

�
B� � � �
� �� �
� � �

�
CA �
 �

�
B� � � �
� � �
� � �

�
CA �����	

�� �

�
B� � � �i
� � �
i � �

�
CA �� �

�
B� � � �
� � �
� � �

�
CA ����
	

� �

�
B� � � �
� � �i
� i �

�
CA �� �

�p
�

�
B� � � �
� � �
� � ��

�
CA �����	

�
�

�
�i�
�

�
�j� � ifijk

�

�
�k

f��� � �� f�
 �
�
�
� f��� � ��

�
� f�
� �

�
�
� f�� �

�
�
� f�
� �

�
�
� f�� � ��

�
� f
�� �p

�
� � f�� �

p
�
� �

�In the same way being patient one can construct algebra representation
of the dimension n for any unitary group SU�n	 of �nite n� 	 These matrices
realize ��dimensional representation of the algebra of the group SU��	 with
the basis spinors �

B� �
�
�

�
CA �
�
B� �
�
�

�
CA �
�
B� �
�
�

�
CA �

��



Representation of the dimension � is given by the matrices � � � in the
linear space spanned over basis spinors

x� �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
� x� �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
� x� �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
�x
 �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
�

x� �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
� x� �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
�x �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
� x� �

�
BBBBBBBBBBBBB�

�
�
�
�
�
�
�
�

�
CCCCCCCCCCCCCA
�

But similar to the case of SU��	 where any ��vector can be written as a
traceless matrix � � �� also here any ��vector in SU��	 X � �x�� ���� x�	 can
be put into the form of the � � � matrix�

X�
� �

�p
�

X�

k��
�kxk � �����	

�p
�

�
BB�

x� �
�p
�
x� x� � ix� x
 � ix�

x� � ix� �x� � �p
�
x� x� � ix

x
 � ix� x� � ix � �p
�
x�

�
CCA �

In the left upper angle we see immediately previous expression ����
	 from
SU��	�

The direct product of two spinors q� and q� can be expanded exactly
at the same manner as in the case of SU��	 �but now 
� � � �� �� �	 into
the sum of two irreducible representations �IR�s	 just by symmetrizing and
antisymmetrizing the product�

q� � q� �
�

�
fq�q� � q�q�g� �

�
�q�q� � q�q�� � T f��g� T ����� ����	

��



Symmetric tensor of the �nd rank has dimension dnS � n�n � �		� and for
n � � d�S � 
 which is seen from its matrix representation�

T f��g �

�
B� T �� T �� T ��

T �� T �� T ��

T �� T �� T ��

�
CA

and we have taken into account that T fikg � T fkig � T ik �i �� k� i� k � �� �� �	�
Antisymmetric tensor of the �nd rank has dimension dnA � n�n � �		�

and for n � � d�A � � which is also seen from its matrix representation�

T ���� �

�
B� � t�� t��

�t�� � t��

�t�� �t�� �

�
CA

and we have taken into account that T �ik� � �T �ki� � tik �i �� k� i� k � �� �� �	
and T ���� � T ���� � T ���� � ��

In terms of dimensions it would be

n� n � n�n � �		�jSS � n�n � �		�jAA �����	

or for n � � � � � � 
 � ���
Let us for example form the product of the spinor q� and its conjugate

spinor q� whose basic vectors could be taken as three rows �� � �	� �� �
�	and �� � �	� Now expansion into the sum of the IR�s could be made by
subtraction of a trace �remind that Gell�Mann matrices are traceless	

q� � q� � �q
�q� � �

n
��q

�q�	 �
�

n
��q

�q� � T �
� � ��I�

where T �
� is a traceless tensor of the dimension dV � �n

���	 corresponding to
the vector representation of the group SU��	 having at n � � the dimension
�� I being a unit matrix corresponding to the unit �or scalar	 IR� In terms
of dimensions it would be n� �n � �n� � �	 � �n or for n � � � � �� � � � ��

At this point we �nish for a moment with a group formalism and make a
transition to the problem of classi�cation of particles along the representation
of the group SU��	 and to some consequencies of it�

��



Chapter �

Unitary symmetry and quarks

��� Eightfold way� Mass formulae in SU ����

����� Baryon and meson unitary multiplets

Let us return to baryons �	�� and mesons ��� As we remember there
are � particles in each class� � baryons� � isodublets of nucleon �proton
and neutron	 and cascade hyperons ����� isotriplet of  �hyperons and isos�
inglet !� and � mesons� isotriplet �� two isodublets of strange K�mesons
and isosinglet �� Let us try to write baryons B��	��	 as a ��vector of re�

al �elds B � �B�� ���� B�	� �� � N
� N�� B�� B� B�	� where � ��B�� B�� B�	�
� �� �� �	� Then the basis vector of the ��dimensional representation could
be written in the matrix form�

B�
� �

�p
�

X�

k��
�kBk �

�p
�

�
BB�
 � �

�p
�
B�  � � i � N
 � iN�

 � � i � � � �
�p
�
B� B� � iB

N
 � iN� B� � iB � �p
�
B�

�
CCA � ����	

�
BB�

�p
�
 � � �p

�
!�  � p

 � � �p
�
 � � �p

�
!� n

�� �� � �p
�
!�

�
CCA �

��



At the left upper angle of the matrix we see the previous espression �����	
from theory of isotopic group SU��	� In a similar way pseudoscalar mesons
yield �� � matrix

P �
� �

�
BB�

�p
�
�� � �p

�
� �� K�

�� � �p
�
�� � �p

�
� K�

K� �K� � �p
�
�

�
CCA � ����	

Thus one can see that the classii�cation proves to be very impressive� in�
stead of �
 particular particles we have now only � unitary multiplets� But
what corollaries would be� The most important one is a deduction of mass
formulae� that is� for the �rst time it has been succeded in relating among
themselves of the masses of di�erent elementary particles of the same spin�

����� Mass formulae for octet of pseudoscalar mesons

As it is known� mass term in the Lagrangian for the pseudoscalar meson
�eld described by the wave function r has the form quadratic in mass �to
assure that Lagrange�Euler equation for the free point�like meson would yield
Gordon equation where meson mass enters quadratically	

LP
m � m�

PP
��

and for octet of such mesons with all the masses equal �degenerated	�

LP
m � m�

PP
�
� P

�
�

�note that over repeated indices there is a sum	� while m
 � ��� MeV�mK �
�� MeV� m� � ��� MeV� Gell�Mann proposed to refute principle that La�
grangian should be scalar of the symmetry group of strong intereractions�
here unitary group SU��	� and instead introduce symmetry breaking but
in such a way as to conserve isotopic spin and strangeness �or hypercharge
Y � S�B where B is the baryon charge equal to zero for mesons	� For this
purpose the symmetry breaking term should have zero values of isospin and
hypercharge� Gell�Mann proposed a simple solution of the problem� that is�
the mass term should transform as the ���component of the octet formed
by product of two meson octets� �Note that in either meson or baryon octet

��



���component of the matrix has zero values of isospin and hypercharge	 First
it is necessary to extract octet from the product of two octets entering La�
grangian� It is natural to proceed contracting the product P �

� P
�
� along upper

and sub indices as P �
� P

�
� or P

�
�P

�
� and subtract the trace to obtain regular

octets

M�
� � P �

� P
�
� �

�

�
P �
� P

�
�

�

N�
� � P �

�P
�
� �

�

�
P �
� P

�
�

M�
� � �� N�

� � � �over repeated indices there is a sum	� Components ��
of the octets M�

� I N�
� would serve us as terms which break symmetry in

the mass part of the Lagrangian LP
m� One should only take into account that

in the meson octet there are both particles and antiparticles� Therefore in
order to assure equal masses for particles and antiparticles� both symmetry
breaking terms should enter Lagrangian with qual coe�cients� As a result
mass term of the Lagrangian can be written in the form

LP
m � m�

PP
�
� P

�
� �m�

�P �M
�
� �N�

� 	 �

� m�
�PP

�
� P

�
� �m�

�P �P
�
�P

�
� � P �

� P
�
�	�

Taking together coe�cients in front of similar bilinear combinations of the
pseudoscalar �elds we obtain

m�

 � m�

�P � m�
K � m�

�P �m�
�P � m�

� � m�
�P �

�

�
m�

�P �

wherefrom the relation follows immediately

�m�
K � �m

�
� �m�


� � � �� ��� � �� �� �� � �� ���g�w	��
The agreement proves to be impressive taking into account clearness and
simplicity of the formalism used�

����� Mass formulae for the baryon octet J
P 	 �

�

�

Mass term of a baryon B S JP � �
�

�
in the Lagrangian is usually linear in

mass �to assure that Lagrange�Euler equation of the full Lagrangian for free

�




point�like baryon would be Dirac equation where baryon mass enter linearly	

LB
m � mB

�BB�

For the baryon octet B�
� with the degenerated �all equal	 masses the corre�

sponding part of the Lagrangian yields

LB
m � mB

�B�
�B

�
��

But real masse are not degenerated at all� mN � ��� m� � ���� m� �
���� m� � ���� �in MeV 	� Also here Gell�Mann proposed to introduce
mass breaking through breaking in a de�nite way a symmetry of the La�
grangian�

LB
m � m�

�B�
�B

�
� �m�

�B�
�B

�
� �m�

�B�
�B

�
�	�

Note that here there are two terms with the ���component as generally speak�
ing m� �� m�� �While mesons and antimesons are in the same octet� baryons
and antibaryons forms two di�erent octets	 Then for particular baryons we
have�

p � B�
�� n � B�

� mp � mn � m� �m�

 � � B�
��  � � B�

� m���� � m�

� �p


!� � B�

� � m� � m� �
�

�
�m� �m�	�

�� � B�
�� �� � B�

� m���� � m� �m�

The famous Gell�Mann�Okubo mass relation follows immediately�

��mN �m�	 � m� � �m�� ���� � �����

�Values at the left�hand side �LHS	 and right�hand side �RHS	 are given
in MeV�	 The agreement with experiment is outstanding which has been a
stimul to further application of the unitary Lie groups in particle physics�

����� Nonet of the vector meson and mass formulae

Mass formula for the vector meson is the same as that for pseudoscalar ones
�in this model unitary space do not depends on spin indices 	�

��



But number of vector mesons instead of � is � therefore we apply this
formula taking for granted that it is valid here� to �nd mass of the isoscalar
vector meson �� of the octet�

m�
��
�
�

�
��m�

K� �m�
�	�

wherefrom m�� � �� MeV� But there is no such isoscalar vector meson of
this mass� Instead there are a meson � with the mass m� � ��� MeV and
a meson � with the mass m � ���� Mev� Okubo was forced to introduce
nonet of vector mesons as a direct sum of the octet and the singlet

V �
� �

�
BB�

�p
�
�� � �p

�
�� �� K��

�� � �p
�
�� � �p

�
�� K��

K�� �K�� �

�
CCA�

�

�
BB�

�p
�
�� � �

� �p
�
�� �

� � �p
�
��

�
CCA ����	

which we write going a little forward as

V �
� �

�
BB�

�p
�
�� � �p

�
� �� K��

�� � �p
�
�� � �p

�
� K��

K�� �K�� �

�
CCA ����	

�
�
�

���
q

�
�

q
�
�

�
q

�
�

q
�
�

�
A� ��

��

�
�

where
q

�
� is essentially cos�� � �� being the angle of ideal mixing of the

octet and singlet states with I � �� S � �� Let us stress once more that
introduction of this angle was caused by discrepancy of the mass formula for
vector mesons with experiment�

%Nowadays ��
&	 there is no serious theoretical basis to treat V� �vector
nonet$V�Z�	 as to main quantity never extracting from it �� �our ��$V�Z�	
as SpV� so Okubo assertion should be seen as curious but not very profound
observation�% S�Gasiorowicz� %Elementary particles physics%� John Wiley '
Sons� Inc� NY�London�Sydney� �
��

We will see a little further that the Okubo assertion is not only curious
but also very profound�

��



����� Decuplet of baryon resonances with J
P 	 �

�

�

and its mass formulae

Up to �
� nine baryon resonances with JP � �
�

�
were established� isoquartet

� with I � �
�
	 #�����	� N��� isotriplet  ������	 � !��� ��� isodublet

�������	 � � � �� But in SU��	 there is representation of the dimension
��� an analogue to IR of the dimension � in SU��	 � with I � �

�
	 which

is given by symmetric tensor of the �rd rank �what with symmetric tensor

describing the spin state JP � �
�

�
yields symmetric wave function for the

particle of half�integer spin&&&	� It was absent a state with strangeness ��
which we denote as (� With this state decuplet can be written as�

#�
��� #�

��� #�
��� #��

���

 �����  �����  �����

������ ������

� (���� �

Mass term of the Lagrangian for resonance decuplet B���� following Gell�
Mann hypothesis about octet character of symmetry breaking of the La�
grangian can be written in a rather simple way�

LB�

M� �M�
�
�B�
���B

��� �M�
�
�B�
���B

����

Really from unitary wave functions of the decuplet of baryon resonances
B���� and corresponding antidecuplet �B���� due to symmetry of indices it is
possible to constract an octet in a unique way� The result is�

M	 �M�
�

M�� �M�
� �M�

�

M�� �M�
� � �M

�
�

M�� �M�
� � �M

�
�

Mass formula of this kind is named equidistant� It is valid with su�cient
accuracy� the step in mass scale being around ��� MeV� But in this case the
predicted state of strangeness �� and mass ����� � ���	 � �
�� MeV cannot

�



be a resonance as the lighest two�particle state of strangeness �� would be
�������	K���		 with the mass ���� MeV& It means that if it exists it should
be a particle stable relative to strong interactions and should decay through
weak interactions in a cascade way loosing strangeness �� at each step�

This prediction is based entirely on the octet symmetry breaking of the
Lagrangian mass term of the baryon decuplet B�����

Particle with strangeness �� (� was found in �
�� its mass turned out
to be ��
��� � � �� �	 MeV coinciding exactly with SU��	 prediction&

It was a triumph of unitary symmetry& The most of physicists believed in
it from �
� on� �By the way the spin of the (� hyperon presumably equal
to ��� has never been measured�	

��



��� Praparticles and hypothesis of quarks

Upon comparing isotopic and unitary symmetry of elementary particles one
can note that in the case of isotopic symmetry the lowest possible IR of the
dimension � is often realized which has the basis �� �	T � �� �	T � along
this representation� for example� N���K����K� transform� however at the
same time unitary multiplets of hadrons begin from the octet �analogue of
isotriplet in SU��	I 	�

The problem arises whether in nature the lowest spinor representations
are realized� In other words whether more elementary particles exist than
hadrons discussed above�

For methodical reasons let us return into the times when people was living
in caves� used telegraph and vapor locomotives and thought that ��mesons
were bounded states of nucleons and antinucleons and try to understand in
what way one can describe these states in isotopic space�

Let us make a product of spinors Na� �Nb� a� b � �� �� and then subrtract
and add the trace �NcN

c� c � �� �� �� expanding in this way a product of two
irreducible representations �IR	 �two spinors	 into the sum of IR�s�

�Nb �Na � � �NbN
a � �

�
ab
�NcN

c	 �
�

�
ab
�NcN

c� ����	

what corresponds to the expansion in terms of isospin �
�
� �

�
� � � �� or �in

terms of IR dimensions	 �� � � � � �� In matrix form

��p� �n	�
�
p
n

�
�

�
��pp� �nn		� �np

�pn ���pp� �nn		�

�
�

�

�
��pp � �nn		� �

� ��pp � �nn		�

�
� ���
	

which we identify for the J�� state of nucleon and antinucleon spins and
zero orbital angular momentum with the pion isotriplet and isosinglet ��

� �

� �p
�
�� ��

�� � �p
�
��

�
�

� �p
�
�� �

� �p
�
��

�
�

while for for the J�� state of nucleon and antinucleon spins and zero orbital
angular momentum with the ��meson isotriplet and isosinglet ��� �p

�
�� ��

�� � �p
�
��

�
�

� �p
�
�� �

� �p
�
��

�
�

��



This hypothesis was successfully used many times� For example� within this
hypothesis the decay �� into two ��quanta was calculated via nucleon loop�

�� p

p
p

�

�

The answer coincided exactly with experiment what was an astonishing
achievement� Really� mass of two nucleons were so terribly larger than the
mass of the ���meson that it should be an enormous bounding energy between
nucleons� However the answer was obtained within assumption of quasi�free
nucleons ���� one of the achievements of Feynman diagram technique ap�
plied to hadron decays�	

With observation of hyperons number of fundamental baryons was in�
creased suddenly� So �rst composite models arrived� Very close to model of
unitary symmetry was Sakata model with proton� neutron and ! hyperon
as a fundamental triplet� But one was not able to put baryon octet into
such model� However an idea to put something into triplet remains very
attractive�

��



��� Quark model� Mesons in quark model�

Model of quarks was absolutely revolutionary� Gell�Mann and Zweig in
�
� assumed that there exist some praparticles transforming along spinor
representation of the dimension � of the group SU��	 �and correspond�
ingly antipraparticles transforming along conjugated spinor representation
of the dimension � 	� and all the hadrons are formed from these funda�
mental particles� These praparticles named quarks should be fermions �in

order to form existing baryons	� and let it be fermions with JP � �
�

�

q�� 
 � �� �� �� q� � u� q� � d� q� � s� Note that because one needs at least
three quarks in order to form baryon of spin ���� electric charge as well as
hypercharge turn out to be DROBNYMI non�integer�&&&	 which presented ��
years ago as open heresy and for many of us really unacceptable one�

Quarks should have the following quantum numbers�

Q I I� Y�S�B B

u ��� ��� ��� ��� ���
d ���� ��� ���� ��� ���
s ���� � � ���� ���

in order to assure the right quantum numbers of all � known baryons of
spin ��� ����	� p�uud	� n�ddu	�  ��uus	�  ��uds	�  ��dds	� !�uds	� ���ssu	�
���ssd	� In more details we shall discuss baryons a little further in another
section in order to maintain the continuity of this talk�

First let us discuss meson states� We can try to form meson states
out of quarks in complete analogy with our previous discussion on nucleon�
antinucleon states and Eqs��������
	�

�q� � q� � ��q�q
� � �

�
�� �q�q

�	 �
�

�
�� �q�q

�	�

��u� �d� �s	�
�
B� u

d
s

�
CA �

�
B� �uu �du �su
�ud �dd �sd
�us �ds �ss

�
CA �

��



�
B� D�

�du �su
�ud D� �sd
�us �ds D�

�
CA� �

�
��uu� �dd � �ss	I� ����	

where

D� � �uu� �

�
�qq �

�

�
��uu� �dd	 �

�



��uu� �dd � ��ss	 �

�
�

�
�q��q �

�

�
p
�
�q��q�

D� � �dd� �

�
�qq � ��

�
��uu� �dd	 �

�



��uu� �dd � ��ss	 �

� ��
�
�q��q �

�

�
p
�
�q��q�

D� � �ss� �

�
�qq � ��



��uu� �dd� ��ss	 � � �p

�
�q��q�

We see that the traceless matrix obtained here could be identi�ed with the
meson octet JP � ���S�state	� the quark structure of mesons being�

�� � ��ud	� �� � � �du	�

K� � ��us	� K� � ��su	�

�� �
�p
�
��uu� �dd	�

K� � ��sd	� �K� � � �ds	�

� �
�p


��uu� �dd� ��ss	�

In a similar way nonet of vector mesons Eq������	 can be constructed� But
as they are in � we take straightforwardly the �rst expression in Eq�����	
with the spins of quarks forming J � � �always S�state of quarks	�

��u� �d� �s	� �
�
B� u

d
s

�
CA
�

�

�
B� �uu �du �su
�ud �dd �sd
�us �ds �ss

�
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J��

�

�

�
BB�

�p
�
�� � �p

�
� �� K��

�� � �p
�
�� � �p

�
� K��

K�� �K�� �

�
CCA ����	
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This construction shows immediately a particular structure of the � meson �
it contains only strange quarks&&&

Immediately it becomes clear more than strange character of its decay
channels� Namely while � meson decays predominantly into � pions� the �
meson practically does not decay in this way ��� � � �	" although ener�
getically it is very �pro�table� and� instead� decays into the pair of kaons �
��� �� �� 	" into the pair K�K� and ���� �� �� �	" into the pair K�

LK
�
S	�

This strange experimental fact becomes understandable if we expose quark
diagrams at the simplest level�

s

�s

� u� d

K

�K

s

�s

�

u� d

u� d

u� d

Thus we have convinced ourselves that Okubo note on nonet was not only
curious but also very profound�

��



We see also that experimental data on mesons seem to support existence
of three quarks�

But is it possible to estimate e�ective masses of quarks� Let us assume
that ��meson is just made of two strange quarks� that is� ms � m��		� � ���
MeV� An e�ective mass of two light quarks let us estimate from nucleon mass
as mu � md � Mp	s � ��� MeV� These masses are called constituent ones�
Now let us look how it works�

Mp�uu�d� �Mn�dd�u� � �� Mev �input	�� ��	exp

M��qq�s� � ���� Mev �� ���	exp

M��uds� � ����� Mev �� ����	exp

M��ss�q� � ���� Mev �� ����	exp

�There is one more very radical question�
Whether quarks exist at all�
From the very beginning this question has been the object of hot discus�

sions� Initially Gell�Mann seemed to consider quarks as some suitable math�
ematical object for particle physics� Nowadays it is believed that quarks are
as real as any other elementary particles� In more detail we discuss it a little
later�	

�




	Till Parisina�s fatal charms
Again attracted every eye���	


Lord Byron� �Parisina�

��



��� Charm and its arrival in particle physics�

Thus� there exist three quarks&
During �� years everybody was thinking in this way� But then something

unhappened happened�
In november ��� on Brookehaven proton accelerator with max proton

energy �� GeV �USA	 and at the electron�positron rings SPEAR�SLAC�USA	
it was found a new particle$ J	� vector meson decaying in pions in the
hadron channel at surprisingly large mass ���� MeV and surprisingly long
mean life and� correspondingly� small width at the level of ��� KeV although
for hadrons characteristic widths oscillate between ��� MeV for rho meson�
� Mev for � and � MeV for � meson� Taking analogy with suppression of the
��pion decay of the vector � meson which as assumed is mainly ��ss	� state
the conclusion was done that the most simple solution would be hypothesis
of existence of the �th quark with the new quantum number %charm%� In
this case J	������	 is the ��cc	 vector state with hidden charm�

c

�c

J	�

u� d

u� d

u� d

And what is the mass of charm quark� Let us make a bold assumption
that as in the case of the ������	 meson where mass of a meson is just
double value of the ��constituent�	 strange quark mass ���� MeV	 � so called
�constituent� masses of quarks u and d are around ��� Mev as we have see	
mass of the charm quark is just half of that of the J	������	 particle that
is around ���� MeV �more than ��� times proton mass&	�

But introduction of a new quark is not so innocue� One assumes with
this hypothesis existence of the whole family of new particles as mesons with

��



the charm with quark content ��uc	� ��cu	� � �dc	� ��cd	� with masses around
��������������	 MeV at least and also ��sc	 I ��cs	 with masses around
��������������	 MeV� As it is naturally to assume that charm is conserved
in strong interaction as strangeness does� these mesons should decay due to
weak interaction loosing their charm� For simplicity we assume that masses
of these mesons are just sums of the corresponding quark masses�

Let us once more use analogy with the vector ������	 meson main decay
channel of which is the decay K���	 �K���	 and the production of this
meson with the following decay due to this channel dominates processes at
the electron�positron rings at the total energy of ���� MeV�

If analogue of J	������	 with larger mass exists� namely� in the mass re�
gion �����������	��
�� MeV� in this case such meson should decay mostly
to pairs of charm mesons� But such vector meson ������	 was really found at
the mass ���� MeV and the main decay channel of it is the decay to two new
particles$ pairs of charm mesons D����
�	 �D����
�	 or D������	D������	
and the corresponding width is more than �� MeV&&&

c

�c

������	 u� d

D

�D

New�found charm mesons decay as it was expected due to weak interaction
what is seen from a characteristic mean life at the level of ����� � ����� s�

Unitary symmetry group for particle classi�cation grows to SU��	� It is
to note that it would be hardly possible to use it to construct mass formulae
as SU��	 because masses are too di�erent in ��quark model� In any case a
problem needs a study�

�



In the model of � quarks �� �avors as is said today	 mesons would trans�
form along representations of the group SU��	 contained in the direct product
of the ��dimensional spinors � and ���� �� � � � �� � �� or

�q� � q� � ��q�q
� � �

�
�� �q�q

�	 �
�

�
�� �q�q

�	�

where now 
� �� � � �� �� �� ��
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��� The �fth quark� Beauty�

Per la bellezza delle donne
molti sono periti��� Eccl�Sacra Bibbia

Because of beauty of women
many men have perished��� Eccl� Bible

Victorious trend for simplicity became even more clear after another im�
portant discouvery� when in ��� a narrow vector resonance was found at
the mass around �� GeV� )��S	��
�	�*  ��Kev� everybody decided that
there was nothing to think about� it should be just state of two new� �th
quarks of the type �ss or �cc� This new quark was named b from beauty or
bottom and was ascribed the mass around � GeV �M�	�� a half of the mass
of a new meson with the hidden %beauty% )��S	��
�	 � ��bb	�

��



b

�b

)

u� d

u� d

u� d

Immediately searches for next excited states was begun which should sim�
ilarly to ������	 have had essentially wider width and decay into mesons with
the quantum number of %beauty%� Surely it was found� It was )��S	������	�* 
�� MeV� It decays almost fully to meson pair �BB and these mesons B have
mass  ���� � ����� � ���	 MeVw and mean life around ��� ns�
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)������	 u� d
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��	 Truth or top�

Truth is not to be sought in the good fortune of any
particular conjuncture of time� which is uncertain� but in the light of nature
and experience� which is eternal� Francis Bacon

But it was not all the story as to this time there were already 
 leptons
e�� �e���� ��� ��� �� �and 
 antileptons	 and only � quarks� c� u with the
electric charge ����e and d� s� b with the electric charge ����e� Leaving
apart theoretical foundations �though they are and serious	 we see that a
symmetry between quarks and leptons and between the quarks of di�erent
charge is broken� Does it mean that there exist one more� 
th quark with
the new ��avour� named %truth% or %top% �

For �� years its existence was taking for granted by almost all the physi�
cists although there were also many attempts to construct models without
the 
th quark� Only in �
 t�quark was discouvered at the mass close to
the nucleus of �Lu��� mt  ���GeV� We have up to now rather little to
say about it and particles containing t�quark but the assertion that t�quark
seems to be uncapable to form particles�

��



��
 Baryons in quark model

Up to now we have considered in some details mesonic states in frameworks
of unitary symmetry model and quark model up to � quark �avours� Let us
return now to SU��	 and ���avour quark model with quarks q� � u� q� �
d� q� � s and let us construct baryons in this model� One needs at least
three quarks to form baryons so let us make a product of three ��spinors of
SU��	 and search for octet in the expansion of the triple product of the IR�s�
����� � ���������� As it could be seen it is even two octet IR�s in this
product so we can proceed to construct baryon octet of quarks� Expanding
of the product of three ��spinors into the sum of IR�s is more complicate than
for the meson case� We should symmetrize and antisymmetrize all indices to
get the result�

q� � q� � q� �

�

�
�q�q�q� � q�q�q� � q�q�q� � q�q�q� � q�q�q� � q�q�q�	�

�

�
�q�q�q� � q�q�q� � q�q�q� � q�q�q� � q�q�q� � q�q�q�	�

�

�
�q�q�q� � q�q�q� � q�q�q� � q�q�q� � q�q�q� � q�q�q�	�

�

�
�q�q�q� � q�q�q� � q�q�q� � q�q�q� � q�q�q� � q�q�q�	 �

T f���g� T f��g� � T ����� � T ������

All indices go from � to �� Symmetrical tensor of the �rd rank has the dimen�
sion NSSS

n � �n���n���n		
 and for n�� NSSS
� � ��� Antisymmetrical ten�

sor of the �rd rank has the dimension NAAA
n � �n���n���n		
 and for n��

NAAA
� � �� Tensors of mixed symmetry of the dimension Nmix

n � n�n���		�
only for n�� �Nmix

� ��	 could be rewritten in a more suitable form as T �
� up�

on using absolutely antisymmetric tensor �or Levi�Civita tensor	 of the �rd
rank ���� which transforms as the singlet IR of the group SU��	� Really�

������� � u���u
�
��u

�
������ �

���� � u��u
�
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�
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�
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�
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�
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�
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�
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�
� � u��u

�
�u

�
� � u��u

�
�u

�
� � u��u

�
�u

�
�	���� �

� DetU���� � ����

as DetU � �� �The same for ���� etc�	
For example� partly antisymmetric ��dimensional tensor T ����� could be

reduced to
B�
�jAsSU��� � ����T

������

and for the proton p � B�
� we would have

p
�jpiAsSU��� �

p
�B�

� jAsSU��� � �judui� jduui� �����	

Instead the baryon octet based on partly symmetric ��dimensional tensor
T f��g� could be written in terms of quark wave functions as

p

B�

� jSySU��� � ����fq�� q�gq��

For a proton B�
� we have

p

jpiSySU��� �

p

B�

�jSySU��� � �juudi � judui � jduui� �����	

In order to construct fully symmetric spin�unitary spin wave function of
the octet baryons in terms of quarks of de�nite �avour and de�nite spin pro�
jection we should cure only to obtain the overall functions being symmetric
under permutations of quarks of all the �avours and of all the spin projec�
tions inside the given baryon� �As to the overall asymmetry of the fermion
wave function we let colour degree of freedom to assure it�	 Multiplying
spin wave functions of Eqs����������	 and unitary spin wave functions of
Eqs�����������	 one gets�

p
��B�

� j� �
p
���B�

� jAsSU��� � tjA �B�
� jSySU��� � T j

S	� �����	

Taking the proton B�
� as an example one has

p
��jpi� � j � udu� uudi � j� 	
	 � 		
i �����	

j� � uud� udu� duui � j� 		
 � 	
	 � 
		i �
� j�u�u�d� � u�d�u� � d�u�u�

��u�d�u� � u�u�d� � d�u�u� � �d�u�u� � u�u�d� � u�d�u�i�

��



We have used here that

juudi � j 
		i � ju�u�d�i

and so on�
Important note� One could safely use instead of the Eq������	 the shorter

version but where one already cannot change the order of spinors at all&

p

jpi �

p

jB�

�i� � j�u�u�d� � u�d�u� � d�u�u�i� �����	

The wave function of the isosinglet ! has another structure as one can see
oneself upon calcolating

�j!i� � �
p

jB�

�i� � jd�s�u� � s�d�u� � u�s�d� � s�u�d�i� ����
	

Instead decuplet of baryon resonances T f���g with JP � �
�

�
would be writ�

ten in the form of a so called weight diagram �it gives a convenient gra�c
image of the SU��	 IR�s on the ��parameter plane which is characterized by
basic elements� in our case the �rd projection of isospin I� as an absciss and
hypercharge Y as a ordinate	 which for decuplet has the form of a triangle�

#� #� #� #��

 ��  ��  ��

��� ���

(�

and has the following quark content�

ddd udd uud uuu

sdd sud suu

ssd ssu

sss

In the SU��	 group all the weight diagram are either hexagones or triangles
and often are convevient in applications�

��



For the octet the weight diagram is a hexagone with the � elements in
center�

n p

 � � ��!	  �

�� ��

or in terms of quark content�

udd uud

sdd sud suu

ssd ssu

The discouvery of �charm� put a problem of searching of charm baryons�
And indeed they were found& Now we already know !�

c ������ �� �� 
m�w	�
!�
c ��
��� 
��� �m�w	�  ������

c �����	� ����c ���
�	� Let us try to classify them
along the IR�s of groups SU��	 and SU��	� Now we make a product of three
��spinors q�� 
 � �� �� �� �� Tensor structure is the same as for SU��	� But
dimensions of the IR�s are certainly others� ����� � ��
����
����
���� A
symmetrical tensor of the �rd rank of the dimension NSSS

n � �n���n���n		

in SU��	 has the dimension �� and is denoted usually as ��
� Reduction of
the IR ��
 in IR�s of the group SU��	 has the form ��
 � ��� �
�� ������

There is an easy way to obtain the reduction in terms of the corresponding
dimensions� Really� as it is almost obvious� �� spinor of SU��	 reduces to
SU��	 IR�s as �
 � �� � ��� So the product Eqs���������� for n � �
�
 � �
 � ��
 � 

 would reduce as

��� � ��	� ��� � ��	 � �� � �� � �� � �� � �� � �� � �� � �� �


� � ��� � �� � �� � ���

As antisymmetric tensor of the �nd rank T ���� of the dimension NAA
n �

n�n � �		� equal to � at n�� and denoted by us as 

 should be equal to its
conjugate T���� due to the absolutely anisymmetric tensor ����� and so it has
the following SU��	 content� 

 � �� � ���� The remaining symmetric tensor
of the �nd rank T f��g of the dimension NSS

n � n�n��		� equal to � at n��
and denoted by us as ��
 would have then SU��	 content ��
 � 
� ��� � ���
The next step would be to construct reduction to SU��	 for products 

��
 �

�




���
 � ��
 �see Eq����� at n � �� and ��
 � �
 � ���
 � ��
 �Eq������ at
n � ��� Their sum would give us the answer for �� � � ��



 � �
 � ��� � ���	� ��� � ��	 � ��
 � ���
 �
� �� � �� � ��� � �� � �� � ��� �
� ���� � ��	 � ��� � 
� � ��� � ���	

As ���
 is now known it easy to obtain ��
�

��
 � ��
 � �
 � ���
 � ��� � 
� � �� � ���
Tensor calculus with q� � �a q

a � �
 q

 would give the same results�

So ��
 contains as a part ���plet of baryon resonances �	��� As to the
charm baryons �	�� there are two candidate�  c�����	 and �c��
��	 �JP

has not been measured� �	�� is the quark model prediction	 Note by the
way that JP of the (� which manifested triumph of SU��	 has not been
measured since �
� that is for more than �� years& Nevertheless everybody
takes for granted that its spin�parity is �	���

Instead baryons �	�� enter ����plet described by traceless tensor of the
�rd rank of mixed symmetry B�

���� antisymmetric in two indices in square
brackets� p


B�
���� � �����fq�� q�gq�


� �� �� � � � �� �� �� �� This ����plet as we have shown is reduced to the sum
of the SU��	 IR�s as ���
 � ���
��������� It is convenient to choose reduction
along the multiplets with the de�nite value of charm� Into ��plet with C � �
the usual baryon octet of the quarks u�d�s ����	 is naturally placed� The
triplet should contain not yet discouvered in a de�nite way doubly�charmed
baryons�

��cc ���cc

(�
cc

with the quark content
ccd ccu

ccs�

and� for example� the wave function of ��cc in terms of quarks reads
p

j��cci� � j�c�c�u� � c�u	c� � u�c�c�i� �����	

��



Antitriplet contains already discouvered baryons with s � �

!�
c

��c ��c

with the quark content
udc

dsc usc�

and� for example� the wave function of ��c in terms of quarks reads

�j��c i� � js�c�u� � c�s�u� � u�c�s� � c�u�s�i� �����	

Sextet contains discouvered baryons with s � �

 �
c  �

c  ��
c

���c ���c

(�
c

�Note that their quantum numbers are not yet measured&	 with the quark
content

ddc udc uuc

dsc usc

ssc

and� for example� the wave function of ���c in terms of quarks reads

p
��j���c i� � j�u�s�c� � �c�u�d� ����	

�u�c�s� � c�u�s� � s�c�u� � c�s�u�i�
Note also that in the SU��	 group absolutely antisymmetric tensor of the �th
rank ������ �� �� � �� transforms as singlet IR and because of that antisym�
metric tensor of the �th rank in SU��	 T ������ 
� �� � � �� �� �� �� transforms
not as a singlet IR as in SU��	 �what is proved in SU��	 by reduction with
the tensor ����� �� � � � �� �� �	 but instead along the conjugated spinor rep�
resentation �� �which also can be proved by the reduction of it with the tensor
������ �� �� � � � �� �� �� �	�

��



We return here to the problem of reduction of the IR of some group into
the IR�s of minor group or� in particular� to IR�s of a production of two minor
groups� Well�known example is given by the group SU�
	 � SU��	�SU��	S
which in nonrelativistic case has uni�ed unitary model group SU��	 and spin
group SU��	S � In the framework of SU�
	 quarks belong to the spinor of
dimension 
� which in the space of SU��	 � SU��	S could be written as

� � ��� �	 where the �rst symbol in brackets means ��spinor of SU��	 while
the �nd symbol just states for ��dimensional spinor of SU��	� Let us try now
to form a product of ��spinor and corresponding ��antispinor and reduce it
to IR�s of the product SU��	� SU��	S �

�
� � 
� � ��� � �� � ���� �	� ��� �	 � ��� � �� �� �	 �
� �� � �� � � �	 � ���� �	 � ��� �	 � ��� �	� � ��� �	�

that is� in ��� there are exactly eight mesons of spin zero and ���� vector
mesons� while there is also zero spin meson as a SU�
	 singlet� This result
suits nicely experimental observations for light �of quarks u� d� s� mesons� In
order to proceed further we form product of two ��spinors �rst according to
our formulae� just dividing the product into symmetric and antisymmetric
IR�s of the rank ��


� � 
� � ��� � ��� � ��� �	 � ��� �	 � �� � �� �� �	 �
� �
� � ���� � � �	 �

f�
�� �	 � ���� �	g�� � ��
�� �	 � ����� �	����
dimensions of symmetric tensors of the �nd rank being n�n � �		� while of
those antisymmetric n�n��		�� Now we go to product ����
� which should
results as already we have seen in the sum of two IR�s of the �rd rank � one
of them being antisymmetric of the �rd rank �NAAA � n�n�� �n��		
	 and
the other being of mixed symmetry �Nmix � n�n� � �		�	�

��� � 
� � ��� � ��� � ��
�� �	 � ����� �	�� ��� �	 �
� �
� �� �	 � ���� �� � � �	 �

� ���� �	 � ��� �	��� � ���� �	 � ���� �	 � ��� �	 � ��� �	���

Instead the product ��� � 
� should result as already we have seen into the
sum of two IR�s of the �rd rank � one of them being symmetric of the �rd

�



rank �NSSS � n�n���n��		
	 and the other being again of mixed symmetry
�Nmix � n�n� � �		�	 and we used previous result to extract the reduction of
the �
��plet�

��� � 
� � �
� � ��� � f�
�� �	 � ����� �	g � ��� �	 �

� �
� � ��� �� �	 � ���� � �� � � �	 �
� f���� �	 � ���� �		g�� � ���� �	 � ��� �	����

����� �	 � ���� �	 � ��� �	 � ��� �	���

We now see eminent result of SU�
	 that is that in one IR �
� there are
octet of baryons of spin �� and decuplet of baryonic resonances of spin
���� Note that quark model with all the masses� magnetons etc equal just
reproduces SU�
	 model as it should be� In some sense ��quark model gives
the possibility of calculations alternative to tensor calculus of SU�
	 group�

Some words also on reduction of IR of some group to IR�s of the sum
of minor groups� We have seen an example of reduction of the IR of SU��	
into those of SU��	� For future purposes let us consider some examples of the
reduction of the IR�s of SU��	 into those of the direct sum SU��	�SU��	�
Here we just write ��spinor of SU��	 as a direct sum� �� � ���� �	 � ���� �	�
Forming the product of two ��spinors we get�

�� � �� � ��� � ��� � ���� �	 � ���� �	� ���� �	 � ���� �	 �

� ��� � ��� �	 � ���� �	 � ���� �	 � ���� �� �	 �
f�
� �	 � ���� �	 � ��� �	g�� � ����� �	 � ����� �	 � ��� �	����

that is� important for SU��	 group IR�s of dimensions � and � have the
following reduction to the sum SU��	�SU��	�

�� � ���� �	 � ���� �	�

��� � ���� �	 � ����� �	 � ��� �	�

In this case it is rather easy an exercise to proceed also with tensor calculus�

��



Chapter �

Currents in unitary symmetry

and quark models

��� Electromagnetic current in the models
of unitary symmetry and of quarks

����� On magnetic moments of baryons

Main properties of electromagnetic interaction are assumed to be known�
Electromagnetic current of baryons as well as of quarks can be written

in a similar way to electrons in the theory with the Dirac equation� only we
should account in some way for the non�point�like structure of baryons intro�
ducing one more Lorentz structure and two form factors� This current can
be deduced from the interaction Lagrangian of the baryon with the electric
charge e and described by a spinor uB�p	 and electromagnetic �eld A��x	
characterized by its polarization vector ���

e

�MB��� q�


M�
B

	
�uB�p�	�P�GE�q

�	�

�i����	P �q��	��GM �q
�	�uB�p�	�

� �

�+p�mB	uB � �� q � p� � p�� P � p� � p�

�i��� � ���� �� ��

��



GE being electric form factor� GE��	 � ��while GM is a magnetic form factor
and GM ��	 � �B is a total magnetic moment of the baryon in terms of proper
magnetons eh	�mBc� Transition to the model of unitary symmetry means
that instead of the spinor uB written for every baryon one should now put
the whole octet B�

� �
What are properties of electromagnetic current in the unitary symmetry�

Let us once more remind Gell�Mann$Nishijima relation between the particle
charge Q� �rd component of the isospin I� and hypercharge Y �

Q � I� �
�

�
Y�

As Q is just the integral over �th component of electromagnetic current� it
means that the electromagnetic current is just a superposition of the �rd com�
ponent of isovector current and of the hypercharge current which is isoscalar�

So it can be related to the component J�
�� of the octet of vector currents

J�
��� �More or less in the same way as mass breaking was described by the
�� component of the baryonic current but without specifying its space�time
properties�	 The part of the current related to the electric charge should
assure right values of the baryon charges� Omitting for the moment space�
time indices we write

eJ�
� � e� �B�

�B
�
� � �B�

�B
�
� 	�

Here p � B�
� and so on� are octet baryons with JP � �

�

�
� One can see that

all the charges of baryons are reproduced �
But the part treating magnetic moments should not coincide in form with

that for their charges� as there are anomal magnetic moments in addition
to those normal ones� The total magnetic moment is a sum of these two
magnetic moments for charged baryons and just equal to anomal one for the
neutral baryons�

While constructing baryon current suitable for description of the magnetic
moments as a product of baryon and antibaryon octets we use the fact that
there are possible as we already know two di�erent tensor structures �which
re�ects existence of two octets in the expansion ��� � ���������������	�

J�
� � F � �B�

�B
�
� � �B�

�B
�
�	 �D� �B�

�B
�
� � �B�

�B
�
�	�

�

�
��D

�B�
�B

�
� �

��



and trace of the current should be zero� J�
� � �� 
� �� �� � � �� �� ��� Then

electromagnetic current related to magnetic moments � we omit space�time
indices here	 will have the form

J�
� � F � �B�

�B
�
� � �B�

�B
�
� 	 �D� �B�

�B
�
� � �B�

�B
�
� �

�

�
�B�
�B

�
�	�

wherefrom magnetic moments of the octet baryons read�

��p	 � F �
�

�
D� �� �	 � F �

�

�
D�

��n	 � ��
�
D� �� �	 � �F � �

�
D�

����	 � ��
�
D� �� �	 �

�

�
D�

����	 � �F � �

�
D ��!�	 � ��

�
D ����	

�Remind that here B�
� � p�	 Agreement with experiment in terms of only

F and D constants proves to be rather poor� But many modern model
developed for description of the baryon magnetic moments contain these
contributions as leading ones to which there are added minor corrections
often in the frameworks of very exquisite theories�

Let us put here experimental values of the measured magnetic moments
in nucleon magnetons�

��p	 � ���� �� �	 � �� ��� � ������
��n	 � ������ �� �	 � ����
� ������

����	 � ������ � ������
����	 � ���
��� � ������ ��!�	 � ���
��� ���� ����	

And in what way could we construct electromagnetic current of quarks� It
is readily written from Dirac electron current�

J el�m
� �

�

�
�t��t�

�

�
�c��c� �

�

�
�u��u�

��
�
�d��d � �

�
�s��s�� �

�
�b��b�

��



and we have put in square brackets electromagnetic current of the ���avor
model�

And how could we resolve problem of the baryon magnetic moments in
the framework of the quark model�

For this purpose we need explicit form of the baryon wave functions with
the given �rd projection of the spin in terms of quark wave functions also with
de�nite �rd projections of the spin� These wave functions have been given
in previous lectures� We assume that in the nonrelativistic limit magnetic
moment of the baryon would be a sum of magnetic moments of quarks� while
operator of the magnetic moment of the quark q would be �q�qz �quark on
which acts operator of the magnetic moment is denoted by �	� Magnetic
moment of proton is obtained as �here q� � q�� q� � q�� q � u� d� s�	

�p �
X

q�u�d
� p�j+�q�qz jp� ��

�



� �u�u�d� � u�d�u� � d�u�u�j+�q�qz j�u�u�d� � u�d�u� � d�u�u� ��

�




X
q�u�d

� �u�u�d� � u�d�u� � d�u�u�j+�qj�u��u�d� � �u�u��d��
��u�u�d�� � u��d�u� � u�d

�
�u� � u�d�u

�
��

�d��u�u� � d�u
�
�u� � d�u�u

�
� ��

�



���u � ��u � ��d � �u � �d � �u � �d � �u � �u	 �

�



���u � ��d	 � �

�
�u � �

�
�d�

where we have used an assumption that two of three quarks are always spec�
tators so that

� u�u�d�j+�qju��u�d� ��
�� u�j+�qju�� �� �u etc�

Corresponding quark diagrams could be written as �we put only some of
them� the rest could be written in the straightforward manner	�

��



u�

u�

d�

u�

u�

d�

�
u�

u�

d�

u�

u�

d�

�
d�

u�

u�

d�

u�

u�

�

In a similar way we can calculate in NRQMmagnetic moment of neutron�

�n �
X

q�u�d
� n�j�q�qzjn� ��

�



� �d�d�u� � d�u�d� � u�d�d�j�q�qz j�d�d�u� � d�u�d� � u�d�d� ��

�

�
�d � �

�
�u�

magnetic moment of  ��

�� �	 �
X

q�u�s
�  �

� j�q�qzj �
� ��

�



� �u�u�s� � u�s�u� � s�u�u�j�q�qz j�u�u�s� � u�s�u� � s�u�u� ��

�

�
�u � �

�
�s�

magnetic moment of  � �

�� �	 �
X

q�d�s
�  �� j�q�qz j �� ��

�



� �d�d�s� � d�s�d� � s�d�d�j�q�qz j�d�d�s� � d�s�d� � s�d�d� ��

�

�
�d � �

�
�s�

magnetic moment of �� �

����	 �
X

q�u�s
� ���j�q�qz j��� ��
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� �s�s�u� � s�u�s� � u�s�s�j�q�qz j�s�s�u� � s�u�s� � u�s�s� ��

�

�
�s � �

�
�u�

magnetic moment of �� �

����	 �
X

q�d�s
� ��� j�q�qz j��� ��

�



� �s�s�d� � s�d�s� � d�s�s�j�q�qz j�s�s�d� � s�d�s� � d�s�s� ��

�

�
�s � �

�
�d�

and �nally magnetic moment of ! �which we write in some details as it has
the wave function of another type	�

�� �
X

q�u�d�s
� !�j�q�qzj!� ��

�

�
� u�s�d� � s�u�d� � d�s�u� � s�d�u�j�q�qzj
ju�s�d� � s�u�d� � d�s�u� � s�d�u� ��

�

�
� u�s�d� � s�u�d� � d�s�u� � s�d�u�j�qju��s�d� � u�s

�
�d� � u�s�d

�
��

�s��u�d� � s�u
�
�d� � s�u�d

�
�

�d��s�u� � d�s
�
�u� � d�s�u

�
� � s��d�u� � s�d

�
�u� � s�d�u

�
� ��

�

�
��u � �s � �d � �s � �u � �d � �d � �s � �u � �s � �d � �u	 � �s�

In terms of these three quark magnetons it is possible to adjust magnetic
moments of baryons something like up to ��" accuracy�

����� Radiative decays of vector mesons

Let us look now at radiative decays of vector meson V � P � ��

�




V P

�

Let us write in the framework of unitary symmetry model an electromagnetic
current describing radiative decays of vector mesons as the ���component of
the octet made from the product of the octet of preusoscalar mesons and
nonet of vector mesons�

J�
� � P �

� V
�
� � P �

� V
�
� �

�

�
SpPV �

�P �
� V

�
� � �P

�
� V

�
� � P �

� V
�
� 	 � �P

�
� V

�
� � P �

� V
�
� 	�

�

�
SpPV �

��
�p
�
�� �

�



�	�

�p
�
�� �

�p
�
�	� �

�
���	�� � ���� � ��	��	 � ���

We take interaction Lagrangian describing these transitions in the form

L � gV�P�J
�
��A��

Performing product of two matrix and extracting �� component we obtain
for amplitudes of radiative decays in unitary symmetry�

M���	� ���	 � ��
�p
�

�p
�
� �

�
	gV�P� �

�

�
gV�P� �

M��� � ���	 � ��� �

�
	gV�P� �

�

�
gV�P��

M��� � ���	 � �
�p
�

�p
�
gV�P� � gV�P� �

As masses of � and �� mesons are close to each other we neglect a di�erence
in phase space and obtain the following widths of the radiative decays�

*��� � ���	 � *��� � ���	 �  � ��

��



while experiment yields�

���� � ��	Kev � ���� � ��	Kev

Radiative decay of � meson proves to be prohibited in unitary symmetry�

*��� ���	 � ��

The experiment shows very strong suppression of this decay� �
� �� 
	Kev�

����� Leptonic decays of vector mesons V � l
�
l
�

Let us now construct in the framework of unitary symmetry model an elec�
tromagnetic current describing leptonic decays of vector mesons V � l�l��

V l

�l

In sight of previous discussion it is easily to see that it would be su�cient to
extract an octet in the nonet of vector mesons and then take ���component�

J�
� � gV �ll�V

�
� �

�

�
V �
� 	 � gV �ll��

�p
�
�� �

�p
�
�	� �

�
�
p
�� � �	� �

� gV �ll�
�p
�
�� �

�

�
p
�
� � �

�
�	

Ratio of leptonic widths is predicted in unitary symmetry as

*��� � e�e�	 � *��� � e�e�	 � *��� � e�e�	 �  � � � ��

which agrees well with the experimental data�


� �Kev � �� 
Kev � �� �Kev �

Let us perform calculations of these leptonic decays in quark model upon
using quark wave functions of vector mesons For �� � �p

�
��uu� �dd	

*��� � e� � e�	 �

��
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� � �

�
�
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It is seen that predictions of unitary symmetry model of the quark model
coincide with each other and agree with the experimental data�

�



��� Photon as a gauge �eld

Up to now we have treated photon at the same level as other particles that as
a boson of spin � and mass zero� But it turns out that existence of the photon
can be thought as e�ect of local gauge invariance of Lagrangian describing
free �eld of a charged fermion of spin ���� let it be electron� Free motion
of electron is ruled by Dirac equation ����� �me	�e�x	 � � which could be
obtained from Lagrangian

L� � ��e�x	�����e�x	 �me
��e�x	�e�x	�

This Lagrangian is invariant under gauge transformation

��e�x	 � ei��e�x	�


 being arbitrary real phase� Let us demand invariance of this Lagrangian
under similar but local transformation� that is when 
 is a function of x�

��e�x	 � ei��x��e�x	�

It is easily seen that L� is not invariant under such local gauge transformation�

L�� � ���e�x	�����
�
e�x	 �me

���e�x	�
�
e�x	 �

��e�x	�����e�x	 � i
�
�x	

�x�
��e�x	���e�x	�me

��e�x	�e�x	�

In order to cancel the term violating gauge invariance let us introduce some
vector �eld A� with its own gauge transformation

A�
� � A� � �

e

�
�x	

�x�
�

and introduce also an interaction of it with electron through Lagrangian

ie ��e�x	���e�x	A��

e being coupling constant �or constant of interaction	� But we cannot intro�
duce a mass of this �eld as obviously mass term of a boson �eld in Lagrangian
m�A�A

� is not invariant under chosen gauge transformation for the vector


�



�eld A�� Let us now identify the �eld A� with the electromagnetic �eld
and write the �nal expression of the Lagrangian invariant under local gauge
transformations of the Abelian group U��	

L� � ��e�x	�����e�x	 � ie ��e�x	���e�x	A�

�me
��e�x	�e�x	� �

�
F��F

���

where F�� describe free electromagnetic �eld

F�� � ��A� � ��A��

satisfying Maxwell equations

��F�� � �� ��A� � ��

The ��vector potential of the electromagnetic �eld A� � ��� �A	 is re�

lated to measured on experiment magnetic �H and electric �elds �E by the
relations

�H � rot �A� �E � ��
c

� �A

�t
� grad ��

while tensor of the electromagnetic �eld F�� is written in terms of the �elds
�E and �H as

F�� � ��A� � ��A� �

�
BBB�

� Ex Ex Ex

�Ex � Hz �Hy

�Ey �Hz � Hx

�Ez Hy �Hx �

�
CCCA �

Maxwell equations �in vacuum	 in the presence of charges and currents read

rot �E � ��
c

� �H

�t
� div �H � ��

rot �H �
�

c

� �E

�t
�
��

c
�j� div �E � ����

where � is the density of electrical charge and j is the electric current den�
sity� In the ��dimensional formalism Maxwell equations �in vacuum	 in the
presence of charges and currents can be written as

��F�� � j�� j� � ��� �j	�

�������F�� � �� ��A� � ��


�



��� � meson as a gauge �eld

In ��� that is more than half�century ago Yang and Mills decided to try
to obtain also � meson as a gauge �eld� The � mesons were only recently
discouvered and seemed to serve ideally as quants of strong interaction�

Similar to photon case let us consider Lagrangian of the free nucleon �eld
where nucleon is just isospinor of the group SU��	I of isotopic transforma�
tions with two components� that is proton � chosen as a state with I������	
and neutron � chosen as a state with I������	�

L� � ��N�x	�����N�x	 �mN
��N�x	�N�x	�

This Lagrangian is invariant under global gauge transformations in isotopic
space

��N �x	 � ei�����N�x	�

where �
 � �
�� 
�� 
�	 are three arbitrary real phases� Let us demand now
invariance of the Lagrangian under similar but local gauge transformation in
isotopic space when �
 is a function of x�

��N�x	 � ei���x����N�x	�

However as in the previous case The L� is not invariant under such local
gauge transformation�

L�� � ���N�x	�����
�
N�x	 �mN

���N�x	�
�
N�x	 �

��N�x	�x����N�x	�

�i ��N�x	��
����
�x	

�x�
�N�x	 �mN

��N�x	�N�x	�

In order to cancel term breaking gauge invariance let us introduce an isotriplet
of vector �elds ��� with the gauge transformation

�� ���� � U�����U
y � �

gNN�

�U

�x�
U y

where U � ei���x��� � An interaction of this isovector vector �eld could be given
by Lagrangian

gNN�
��N�x	��������N�x	�


�



gNN� being coupling constant of nucleons to � mesons� Exactly as in the
previous case we cannot introduce a mass for this �eld as in a obvious way
mass term in the Lagrangian m������

� is not invariant under the chosen gauge
transformation of the �eld ���� Finally let us write Lagrangian invariant under
the local gauge transformations of the non�abelian group SU��	�

L � ��N�x	�����N�x	 �mN
��N�x	�N�x	�

gNN�
��N�x	���� ����N �x	� �

�
�F �� �F���

�F�� describing a free massless isovector �eld �� It is invariant under gauge

transformations U y �F �
��U � �F��� Let us write a tensor of free � meson �eld

�� �F�� � �kF
k
�� � ,F��� ���i� �j� � �i�ijk�k� i� j� k � �� �� �	�

�F k
�� � ����

k
� � ���

k
�	� �gNN�i�

kij�i��
j
�

or
,F�� � ��� ,�� � ��,��	� gNN��,��� ,�� �

and see that this expression transforms in a covariant way while gauge trans�
formation is performed for the �eld ��

U y��� ,��� � ��,�
�
�	U �

��� ,�� � ��,��	 � �U
y��U� ,���� �U y��U� ,�� ��

U y�,���� ,�
�
��U � �,��� ,�� � �

�

gNN�
�U y��U� ,���� �

gNN�
�U y��U� ,����

Finally�
U y �F �

��U � U y��� ,��� � ��,�
�
� � gNN��,�

�
�� ,�

�
��	U �

�� ,�� � ��,�� � gNN��,��� ,�� � � �F���

It is important to know the particular characteristic of the non�abelian vector
�eld � it proves to be autointeracting� that is� in the term ���	�	j�F �� j� of the
lagrangian new terms appear which are not bilinear in �eld � �as is the case
for the abelian electromagnetic �eld	� but trilinear and even quadrilinear in
the �eld �� namely� �������� and ����

�
��


�



Later this circumstance would prove to be decisive for construction of the
non�abelian theory of strong interactions� that is of the quantum chromody�
namics �QCD	

The Yang�Mills formalism was generalized to SU��	f where the require�
ment of the local gauge�invariance of the Lagrangian describing octet baryons
led to appearance of eight massless vector bosons with the quantum numbers
of vector meson octet �� known to us�

Unfortunately along this way it proved to be impossible to construct
theory of strong interactions with the vector meson as quanta of the strong
�eld� But it was developed a formalism which make it possible to solve this
problem not in the space of three �avors with the gauge group SU��	f but
instead in the space of colors with the gauge group SU��	C where quanta of
the strong �eld are just massless vector bosons having new quantum number
�color� named gluons�


�



��� Vector and axialvector currents in uni

tary symmetry and quark model

����� General remarks on weak interaction

Now we consider application of the unitary symmetry model and quark model
to the description of weak processes between elementary particles�

Several words on weak interaction� As is well known muons� neutrons
and ! hyperons decay due to weak interaction� We have mentioned muon as
leptons �at least nowadays	 are pointlike or structureless particle due to all
know experiments and coupling constants of them with quanta of di�erent
�elds act� say� in pure form not obscured by the particle structure as it
is in the case of hadrons� The decay of muon to electron and two neutrinos
�� � e����e��� is characterized by Fermi constant GF � ����m��

p �Neutron
decay into proton � electron and antineutrino called usually neutron �� decay
is characterized practically by the same coupling constant� However ��
decays of the ! hyperon either ! � p � e� � ��e or ! � p � �� � ��� are
characterized by noticibly smaller coupling constant� The same proved to
be true for decays of nonstrange pion and strange K meson� Does it mean
that weak interaction is not universal in di�erence from electromagnetic one�
It may be so� But maybe it is possible to save universality� It proved to
be possible and it was done more than �� years ago by Nicola Cabibbo by
introduction of the angle which naturally bears his name� Cabibbo angle �C�

For weak decays of hadrons it is su�cient to assume that weak interactions
without change of strangeness are de�ned not by Fermi constant GF but
instead by GF cos�C while those with the change of strangeness are de�ned
by the coupling constant GF sin�C� This hypothesis has been brilliantly
con�rmed during analysis of many weak decays of mesons and barons either
conserving or violating strangeness� The value of Cabibbo angle is � ��o�

But what is a possible formalism to describe weak interaction� Fermi has
answered this question half century ago�

We already know that electromagnetic interaction can be given by inter�
action Lagrangian of the type current� �eld�

L � eJ��x	A
��x	 � e ���x	����x	A

��x	�

Note that� say� electron or muon scattering on electron is the process of the


�



�nd order in e� E�ectively it is possible to write it the form current�current�

L��� �
e�

q�
J�J

��

where q� is the square of the momentum transfer� It has turned out that weak
decays also are described by the e�ective Lagrangian of the form current�current
but this has been been taken as the �st order expansion term in Fermi con�
stant�

LW �
GFp
�
J y�J

� �Hermitian Conjugation�

The weak current should have the form

J��x	 � �����x	O����x	 � ���e�x	O��e�x	�

��p�x	O��n�x	cos�C � ��p�x	O����x	sin�C�

The isotopic quantum numbers of the current describing neutron � decay is
similar to that of the �� meson while the current describing � decay of ! is
similar to K� meson� Note that weak currents are charged& Since ��
 it
is known that weak interaction does not conserve parity� This is one of the
fundamental properties of weak interaction� The structure of the operator
O� for the charged weak currents has been established from analysis of the
many decay angular distributions and turns out to be a linear combination
of the vector and axial�vector O� � ���� � ��	 what named often as �V �A	
version of Fermi theory of weak interaction�

Note that axial�vector couplings� those at ���� generally speaking are
renormalized �attain some factor not equal to � which is hardly calculable
even nowadays though there is a plenty of theories	 while there is no need
to renormalize vector currents due to the conservation of vector current�
��V� � ��

But dimensional Fermi constant as could be seen comparing it with the
electromagnetic process in the �nd order could be a re�ection of existence of
very heavy W boson �vector intermediate boson in old terminology	 emitted
by leptons and hadrons like photon� In this case the observed processes of
decays of muon� neutron� hyperons should be processes of the �nd order in
the dimensionless weak coupling constant gW while GF � g�W	�M

�
W � q�	�

and one can safely neglect q��







Thus elementary act of interaction with the weak �eld might be written
not in terms of the product current� current but instead using as a model
electromagnetic interaction�

L �
gWp
�
�J�W

�
� � J y�W

�
� 	�

����� Weak currents in unitary symmetry model

And what are properties of weak interaction in unitary symmetry model� As
weak currents are charged they could be related to components J�

� and J
�
� of

the current octet J�
� � Comparing octet of the weak currents with the octet of

mesons one can see that the chosen components of the current corresponds
exactly � in unitary structure� not in space�time one	 to �� and K� mesons�
Vector current is conserved as does electromagnetic current and therefore has
the same space�time structure� Then

V �
��cos�C � V �

��sin�C � � �B
�
� ��B

�
� � �B�

���B
�
� 	cos�C

�� �B�
� ��B

�
� � �B�

���B
�
� 	sin�C

Here p � B�
� etc are members of the baryon octet matrix J

P � �
�

�
� But for the

part of currents violating parity similarly to the case of magnetic moments
of baryons there are possible two tensor structures and unitary axial�vector
current yields

�A�
�� � F � �B�

� ����B
�
� � �B�

�����B
�
� 	�

D� �B�
� ����B

�
� � �B�

�����B
�
� 	

Similar form is true for A�
���

A�
� � A�

��cos�C �A�
��sin�C

Finally for the neutron � decay one has

GAjn�p�e���e � �F �D	�

GA
pn � �f � d	cos�C � GA

���� � ��F �D	cos�C �

GA
p� �

�p


��F �D	sin�C � GA

��� �
�p


��F �D	sin�C �


�



GA
n�� � ��F �D	sin�C � GA

���� � �F �D	sin�C�

GA
��� �

s
�

�
Dcos�C �

At F � �	�� D � � �SU�
	 � SU��	f � SU��	J 	 GAjn�p�e���e �
�
�
� Ex�

perimental analysis of all the known leptonic decays of hyperons leads to
F � ����� � �� ���� D � ����� � ������ which reproduces the experimental
result jGA	GV jn�p�e���e j � ���
� � ������

����� Weak currents in a quark model

Let us now construct quark charged weak currents� When neutron decays
into proton �and a pair of leptons	 in the quark language it means that one
of the d quarks of neutron transforms into u quark of proton while remaining
two quarks could be seen as spectators� The corresponding weak current
yields

jd� � �u���� � ��	dcos�C �

For the ! hyperon this discussion is also valid only here it is s quark of the !
transforms into u quark of proton while remaining two quarks could be seen
as spectators� The corresponding weak current yields

js� � �u���� � ��	ssin�C�

Logically it comes the form

j� � jd� � js� � �u���� � ��	dC �

where dC � dcos�C � ssin�C�
Thus in the quark sector �as it says now	 left�handed� helicity doublet

has arrived�

�
u
dC

�
L

� �� � ��	

�
u
dC

�
� In the leptonic sector of weak

interaction it is possible to put into correspondence with this doublet follow�

ing left�handed�helicity doublets�

�
�e
e�

�
L

and

�
��
��

�
L

� �Thus the whole

group theory science could be reduced to the group SU��	 �	 Then it comes
naturally an idea about existence of weak isotopic triplet of W bosons which
interacts in a weak way with this weak isodoublet�

L � gW�j� �W� �H�C�


�



� Let us remain for a moment open a problem of renormalizibility of such
theory with massive vector bosons�	

Before we �nish with the charged currents let us calculate constant GA

or more exact the ratio GA	GV for the neutron � decay in quark model�
Nonrelativistic limit for the operator ������ is �z�� where �� transforms
one of the d quarks of the neutron into u quark�

Gnp
A �� p�j��q �qzjn� ��

�
�



� �u�u�d� � u�d�u� � d�u�u�j���qzj�d�d�u� � d�u�d� � u�d�d� ��

�



� �u�u�d� � u�d�u� � d�u�u�j�u��d�u� � �d�u��u�
�u��u�d� � d�u�u

�
� � u�u

�
�d� � �u�d�u

�
� ��

�



���� �� � � �� �� �	 � ��

�
�exp�� ���
� � �����	

Quark model result coincides with that of the exact SU�
	 but disaccord with
the experimental data that is why in calculations as a rule unitary model of
SU��	f is used�






Chapter �

Introduction to

Salam�Weinberg�Glashow

model

��� Neutral weak currents

We are now su�ciently safe with the charged currents �and old version is quite
good	 but hypothesis about weak isotriplet of W leads to neutral currents in
quark sector�

jneutr��ud� �
�

�
��uO�u� �dCO�dC	 �

�
�

�
��uO�u� �dO�d�cos�C	

� � �sO�s�sin�C	
��

�dO�scos�Csin�C � �sO�dcos�Csin�C	�

and� correspondingly� in lepton sector�

jneutr��lept�� �
�

�
���eO��e � �eO�e	�

�
�

�
����O��� � ��O��	�

�We do not write here explicitly weak neutral operator O� as it can diverge
�nally from the usual charged one ���� � ��	�	 Up to the moment when

��



neutral currents were discouvered experimentally presence of these currents
in theory was neither very intriguing nor very disturbing�

But when in ��� one of the most important events in physics of weak
interaction of the �nd half of the XX century happened $ neutral currents
were discouvered in the interactions of neutrino beams of the CERN machine
with the matter� it was become immediately clear the contradiction to solve�
although neutral currents interacted with neutral weak boson �to be estab�
lished yet in those years	 with more or less the same coupling as charged
currents did with the charged W bosons� there were no neutral strange weak
currents which were not much suppressed by Cabibbo angle� Even more�
neutral currents written above opened channel of decay of neutral K mesons
into ���� pair with approximately the same coupling as that of the main de�
cay mode of the charged K� meson � into lepton pair �����	� Experimentally
it is suppressed by � orders of magnitude&&&

*�K�
s � ����		*�K�

s � all	 � ���� ���

Once more have we obtained serious troubles with the model of weak inter�
action&�

In what way� clear and understandable� it is possible to save it� It turns
out to be su�cient to remind of the J	� particle and its interpretation as a
state with the �hidden� charm ��cc	� New quark with charm would save
situation�

����� GIM model

Indeed now the number of quarks is � but in the weak isodoublet only � of
them are in action� And if one �Glashow� Iliopoulos� Maiani	 assumes that
the �th quark also forms a weak isodoublet� only with the combination of d
and s quarks orthogonal to dC � dcos�C � ssin�C� namely� sC � scos�C �
dsin�C� Then apart from charged currents

j� � �c���� � ��	sC

neutral currents should exist of the form�

jneutr��cs� �
�

�
��cO�c� �sCO�sC	 �

��



�

�
��uO�u� �sO�s�cos�C	

� � �dO�d�sin�C	
��

��dO�scos�Csin�C � �sO�dcos�Csin�C	�

The total neutral current yields�

jneutr��ud� �
�

�
��uO�u�

��cO�c� �dO�d � �sO�s	�

There are no strangeness�changing neutral currents at all�
This is so called GIMmechanism proposed in ��� by Glashow� Iliopoulos�

Maiani in order to suppress theoretically decays of neutral kaons already
suppressed experimentally� �For this mechanism Nobel price was given&	

����� Construction of the Salam�Weinberg model

Now we should understand what is the form of the operator O�� But this
problem is already connected with the problem of a uni�cation of weak and
electromagnetic interactions into the electroweak interaction� Indeed the
form of the currents in both interactions are remarkably similar to each
other� Maybe it would be possible to attach to the neutral weak current
the electromagnetic one� It turns out to be possible� and this is the main
achievement of the Salam�Weinberg model�

But we cannot add electromagnetic current promptly as it does not con�
tain weak isospin� Instead we are free to introduce one more weak� interacting
neutral boson Y� ascribing to it properties of weak isosinglet� We shall con�
sider only sector of u and d quarks and put for a moment even �C � � to
simplify discussion�

L � g
�

�
��uL��uL � �dL��dL	W���

�g��a�uL��uL � b�uR��uR � c �dL��dL � q �dR��dR	Y� �

e�
�

�
��uL��uL � �uR��uR	� �

�
� �dL��dL � �dR��dR	�A��

��Jneutr��ud
� Z�

��

��



Having two vector boson �elds W��� Y� we should transfer to two other bo�
son �elds A�� Z�

� �one of them� namely� A� we reserve for electromagnetic
�eld	 and take into account that in fact we do know the right form of the
electromagnetic current� It would be reasonable to choose orthogonal trans�
formation from one pair of �elds to another� Let it be

W�� �
gZ�

� � g�A�p
g� � g��

� Y� �
�g�Z�

� � gA�p
g� � g��

�

Substituting these relations into the formula for currents we obtain in the
left�hand side �LHS	 of the expression for the electromagnetic current the
following formula

gg�p
g� � g��

��
�

�
� a	�uL��uL � b�uR��uR�

����
�
c �dL��dL � q �dR��dR	A�� � eJ emA��

wherefrom

a �
�



� b �

�

�
� c �

�




q � ��
�
� e �

gg�p
g� � g��

�

Then for the neutral current we obtain

�g� � g��	p
g� � g��

�

�
��uL��uL�

� �dL��dL	W�� � g��p
g� � g��

J em �

p
g� � g��

g
g
�

�
��uL��uL � �dL��dL	W���

�
p
g� � g��

g
g

g��

g� � g��
J em

Let us now introduce notations

sin�W �
g�p

g� � g��
� cos�W �

gp
g� � g��

�

��



Now neutral vector �elds are related by formula

W�� � cos�WZ
�
� � sin�WA�� Y� � �sin�WZ�

� � cos�WA��

Finally weak neutral current in the sector of u and d quarks reads

g

cos�W
�
�

�
��uL��uL � �dL��dL	� sin��WJ

em��

Now we repeat these reasonings for the sector of c and s quarks and restore
Cabibbo angle arriving at the neutral weak currents in the model with �
�avors�

Jneutr��GWS
W �

g

cos�W
�
�

�
��cL��cL � �uL��uL � �dL��dL � �sL��sL	�

�sin��WJ em�� ����	

Remember now that the charged current enters Lagrangian as

L �
gW

�
p
�
��c���� � ��	sCW

�
� � �u���� � ��	dCW

�
� �

��sC���� � ��	cW
�
� �

�dC���� � ��	uW
�
� 	

and in the �nd order of perturbation theory in ud�sector one would have

L��� �
�

�

g�W
�M�

W � q�	
�u���� � ��	dC �dC���� � ��	u�H�C��

what should be compared to

Leff �
GFp
�
�u���� � ��	dC �dC���� � ��	u�H�C�

Upon neglecting square of momentum transfer q� in comparing to the W �
boson mass one has

GFp
�
�

g�W
�M�

W

�

�
e�

�M�
W sin��W

�

��



wherefrom

M�
W �

p
�e�

�GF

�

p
���


�GF

� ����GeV �

that is
MW � ��GeV &&&

�Nothing similar happened earlier&	
Measurements of the neutral weak currents give the value of Weinberg

angle as sin��W � �� ����� �� ����� But in this case the prediction becomes
absolutely de�nite� MW � ��GeV� As is known the vector intermediate
boson W was discouvered at the mass ��� ����� �
g�w which agree with the
prediction as one must increase it by ���" due to large radiative corrections�

����� Six quark model and CKM matrix

But nowadays we have 
 and not � quark �avors� So we have to assume that
there is a mix not of two �avors �d and s	 but of all � ones �d� s� b	�

�
B� d�

s�

b�

�
CA �

�
B� Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb

�
CA
�
B� d

s
b

�
CA

This very hypothesis has been proposed by Kobayashi and Maskawa in ����
The problem is to mix �avors in such a way as to guarantee disappearence
of neutral �avor�changing currents� Diagonal character of neutral current is
achieved by choosing of the orthogonal matrix VCKM of the �avor transfor�
mations for the quarks of the charge �����

Even more it occurs that it is now possible to introduce a phase in order
to describe violation of CP�invariance � with number of �avours less then
� one can surely introduce an extra phase but it could be hidden into the
irrelevant phase factor of one of the quark wave functions	� Usually Cabibbo�
Kobayashi�Maskawa matrix is chosen as

VCKM �

�

�
B� c��c�� s��c�� s��e

�i���

�s��c�� � c��s��s��e
i��� c��c�� � s��s��s��e

i��� s��c��
s��s�� � c��c��s��e

i��� �c��s�� � s��c��s��e
i��� c��c��

�
CA � ����	

��



Here cij � cos�ij � sij � sin�ij� �i� j � �� �� �	� while �ij � generalized Cabibbo
angles� At ��� � �� ��� � � one returns to the usual Cabibbo angle �s � ����
Let us write matrix VCKM with the help of Eqs� ������	 as

VCKM � R�����	D
��ei�����	R�����	D�e

i�����	R�����	 �

�
B� � � �
� cos��� sin���
� �sin��� cos���

�
CA
�
B� e�i����� � �

� � �
� � ei�����

�
CA� ����	

�
B� cos��� � sin���

� � �
�sin��� � cos���

�
CA
�
B� ei����� � �

� � �
� � e�i�����

�
CA�

�
B� cos��� sin��� �
�sin��� cos��� �

� � �

�
CA �

Matrix elements are obtained from experiments with more and more pre�
cision� Dynamics of experimental progress could be seen from these two
matrices divided by �� years in time�

V
������
CKM �

�

�
B� ����� to ���� ����� to ����� ����� to �����

����� to ����� ����� to ����� ����� to �����
���� to ���� ���� to ����� ���� to ��


�
CA �
����	

V
������
CKM �

�

�
B� ����� to ����� ���� to ����
 ����� to �����

���� to ����� ����� to ���� ����� to �����
���� to ����� ����� to ����� ��� to ���

�
CA �
����	

The charged weak current could be written as

J�W � ��u� �c� �t	���� � ��	VCKM

�
B� d

s
b

�
CA

�




Neutral current would be the following in the standard 
�quark model of
Salam�Weinberg�

gp
cos�W

JNEJTR��
W �

gp
cos�W

�
�

�
��tL��tL � �SL��SL � �uL��uL�

�dL��dL � �sL��sL � �bL��bL	� sin��WJ
em��

��� Vector bosons W and Y as gauge �elds

Bosons W and Y could be introduced as gauge �elds to assure renormaliza�
tion of the theory of electroweak interactions� We are acquainted with the
method of construction of Lagrangians invariant under local gauge transfor�
mations on examples of electromagnetic �eld and isotriplet of the massless
��meson �elds�

We have introduced also the notion of weak isospin� so now we require
local gauge invariance of the Lagrangian of the left�handed and right�handed
quark �and lepton	 �elds under transformations in the weak isotopic space
with the group SU��	L � SU��	�

But as we consider left� and right� components of quarks �and leptons	
apart we put for a moment all the quark �and lepton	 masses equal to zero�

For our purpose it is su�cient to write an expression for one left�handed
isodoublet and corresponding right�handed weak isosinglets uR� dR�

L� � �qL�x	����qL�x	 � �uR�x	����uR�x	 � �dR�x	����dR�x	

This Lagrangian is invariant under a global gauge transformation

q�L�x	 � ei����qL�x	�

u�R�L�x	 � ei�R�LuR�L�x	�

d�R�L�x	 � ei�
�
R�LdR�L�x	�

where matrices �� act in weak isotopic space and �
 � �
�� 
�� 
�	��R�L� ��R�L
are arbitrary real phases�

��



Let us require now invariance of this Lagrangian under similar but local
gauge transformations when �
 and �R�L� �

�
R�L are functions of x� As it has

been previously L� is not invariant under such local gauge transformations�

L�� � L� � i�qL�x	��
����
�x	

�x�
qL�x	�

�i�uR��
��R�x	

�x�
uR � i �dR��

���R�x	
�x�

dR

�i�uL��
��L�x	

�x�
uL � i �dL��

�� �L�x	
�x�

dL�

In order to cancel terms violating local gauge invariance let us introduce
weak isotriplet of vector �elds �W� and also weak isosinglet Y� with the gauge
transformations

�� �W �
� � U y�� �W�U � �

gW

�U

�x�
U y

GDE U � ei���x��� �

Y �
� � Y� � �

gY

���R � ��R � �L � ��L	
�x�

Interactions of these �elds with quarks could be de�ned by the Lagrangian
constructed above

L �
�p
�
g��uL��dLW

�
� �

�dL��uLW
�
� 	 � g

�

�
��uL��uL � �dL��dL	W���

g��a�uL��uL � b�uR��uR � c �dL��dL � q �dR��dR	Y� �

Thus the requirement of invariance of the Lagrangian under local gauge trans�
formations along the group SU��	L� SU��	 yields appearence of four mass�

less vector �elds �W� Y �
Earlier it has already been demonstrated in what way neutral �elds W���

Y� by an orthogonal transformation can be transformed into the �elds Z��
A�� After that one needs some mechanism �called mechanism of spontaneous
breaking of gauge symmetry	 in order to give masses to W�� Z and to leave
the �eld A� massless� Usually it is achieved by so called Higgs mechanisn�
Finally repeating discussion for all other �avours we come to the already
obtained formulae for the charged and neutral weak currents but already in
the gauge�invariant symmetry with spontaneous breaking of gauge symmetry�

��



��� About Higgs mechanism

Because of short of time we could not show Higgs mechanism in detail as an
accepted way of introducing of massive vector intermediate bosons W�� Z�

into the theory of Glashow�Salam�Weinberg� We give only short introduction
into the subject�

Let us introduce �rst scalar �elds � with the Lagrangian

L � T � V � ������� ���� � ��
� ���
	

Let us look at V just as at ordinary function of a parameter � and search for
the minimum of the potential V ��	�

dV ��	

d�
� ������ ���� � ��

We have � solutions�
��min � ��

����min � �
s
���

�
�

That is� with ��h� we would have two minima �or vacuum states	 not at
the zero point& How to understand this fact� Let us �nd some telegraph
mast and cut all the cords which help to maintain it in vertical state� For a
while it happens nothing� But suddenly we would see that it is falling� And
maybe directly to us� What should be our last thought� That this is indeed
a spontaneous breaking of symmetry&

This example shows to us not only a sort of vanity of our existence but
also the way to follow in searching for non�zero masses of the weak vector
bosons W�� Z�

By introducing some scalar �eld � with nonzero vacuum expectation value
�v�e�v�	 � � �� v it is possible to construct in a gauge�invariant way the
interaction of this scalar �eld with the vector bosons W��W �� Y having at
that moment zero masses� This interaction is bilinear in scalar �eld and
bilinear in �elds W��W �� Y that is it contains terms of the kind ��jW�

� j��
At this moment the whole Lagrangian is locally gauge invariant which assures
its renormalization� Changing scalar �eld � to scalar �eld � with the v�e�v�
equal to zero � � �� � � �� � � �� � we break spontaneously local

�



gauge invariance of the whole Lagrangian but instead we obtain terms of the
kind v�jW�

� j� which are immediately associated with the mass terms of the
vector bosons W�

� � A similar discussion is valid for Z boson�
Now we shall show this %miracle% step by step�
Firs let us introduce weak isodoublet of complex scalar �elds

L � ���
����� ������ �����	�� ����	

where � is a doublet� �T � ��� ��	 with non�zero vacuum value� h�i � v ��
��

It is invariant under global gauge transformations

�� � U� � ei������

Now let us as usual require invariance of the Lagrangian under the local
gauge transformations� The Lagrangian Eq�����	 however is invariant only
in the part without derivatives� So let us study %kinetic% part of it� With
�
�x	 dependent on x we have

���
� � U���� ��U��

it becomes

���
������ � �����U y�����U y	����U � ��� � U	 �

� ���
��U yU	���� ������U y��U	��

�����U y	U���� ��U y���U	��

Let us introduce as already known remedymassless isotriplet of vector mesons
�W with the gauge transformation already proposed

�� �W �
� � U�� �WU y � �

gW
���U	U

y�

but with two interaction Lagrangians transforming under local gauge trans�
formations as�

���� �W y�
� �

�W �
��

� � ��� �W y
��

�W���

��U yU� �W y
�U

y���U	�� ��U y��� �W�U
yU��

��



����U y���U	��

and
���� �W �

����
� � ��� �W����� ��� �W�U

y���U	��

The sum of all the terms results in invariance of the new Lagrangian with
two introduced interaction terms under the local gauge transformations�

We can do it in a shorter way by stating that

��� � ig� �W �
�	�

� �

�U�� � ���U	 � igU� �W�U
yU � ���U	U y	� �

U��� � ig� �W�	��

Then it is obvious that the Lagrangian

��� � ig� �W y
�	�

���� � ig� �W�	�

is invariant under the local gauge transformations�
In the same way but with less di�culties we can obtain the Lagrangian

invariant under the local gauge transformation of the kind

�� � ei��

that is under Abelian transformations of the type use for photon previously�

��� � ig�Y�	����� � ig�Y �	��

But our aim is to obtain masses of the vector bosons� It is in fact already
achieved with terms of the kind ��jW�

� j� and ��Y �
� � Now we should also

assure that our e�orts are not in vain� That is searching for weak boson
masses we should maintain zero for that of the photon� It is su�cient to
propose the Lagrangian

��� � ig� �W y
� � ig�Y�	����� � ig� �W� � ig�Y�	��

where g�jW�
� j���� terms would yield with � � � � v masses of W� bosons

MW � v � g� while term jgW �
� � g�Y�j���� would yield mass of the Z� boson

MZ � v �
q
g� � g�� � v � g

p
g� � g��

g
�

MW

cos�W
�

��



There is a net prediction that the ratio MW 	MZ is equal to cos�W � Experi�
mentally this ratio is �omitting errors	� ��	� which gives the value of Wein�
berg angle as sin��W � ���� in agreement with experiments on neutrino scat�
tering on protons� Due to the construction there is no term jg�W �

��gY�j����
that is photon does not acquire the mass&

Talking of weak bosons and scalar Higgs mesons we omit one important
point that is in the previous Lagrangians dealing with fermions we should
put all the fermion masses equal to zero& Why�

It is because we use di�erent left�hand�helicity and right�hand�helicity
gauge transformations under which the mass terms are not invariant as

mq�qq � mq�qLqR �mq�qRqL�

qL �
�

�
�� � ��	q� qR �

�

�
��� ��	q�

What is the remedy for fermion masses� Again we could use Higgs bosons�
In fact� interaction Lagrangian of quarks �similar for leptons	 with the same
scalar �eld �� �T � ��� ��	 with non�zero vacuum value� h�i � v �� �� can
be written as

Ldm � �d�qL�dR �HC � �d��uL�
�d � �dL�

�dR	 �

�d��uL�
�d� �dL�

�dR �md
�dLdR	

with md � �dv�
�In a similar way lepton masses are introduced�

�l���
l
L�

�l � �lL�
�lR �ml

�lLlR	

with ml � �lv�	
So we could obtain now within Higgs mechanism all the masses of weak

bosons and of all fermions either quarks or leptons�
By this note we �nish our introduction into the Salam�Weinberg model

in quark sector and begin a discussion on colour�

��



Chapter �

Colour and gluons

��� Colour and its appearence in particle

physics

Hypothesis of colour has been the beginning of creation of the modern theory
of strong interaction that is quantum chromodynamics� We discuss in the
beginning several experimental facts which have forced physicists to accept
an idea of existence of gluons � quanta of colour �eld�

�	 Problem of statistics for states uuu� ddd� sss with JP � �
�

�

As it is known fermion behaviour follows Fermi�Dirac statistics and be�
cause of that a total wave function of a system describing half�integer spin
should be antisymmetric� But in quark model quarks forming resonances
#�� � �uuu	� #� � �ddd	 and the particle (� � �sss	 should be in sym�
metric S states either in spin or isospin spaces which is prohibited by Pauli
principle� One can obviously renounce from Fermi�Dirac statistics for quarks�
introduce some kind of �parastatistics� and so on� �All this is very similar to
some kind of �parapsychology� but physicists are mostly very rational peo�
ple�	 So it is reasonable to try to maintain fundamental views and principles
and save situation by just inventing new �colour� space external to space�time
and to unitary space �which include isotopic one	� As one should antisym�
metrize qqq and we have the simplest absolutely antisymmetric tensor of the
�rd rank �abc which �as we already know	 transforms as singlet representation
of the group SU��	 the reduction �abcq

aqbqc would be a scalar of SU��	 in
new quantum number called �colour� �here a� b� c � �� �� � are colour indices

��



and have no relation to previous unitary indices in mass formulae� currents
and so on&	 Thus the fermion statistics is saved and there is no new quan�
tum number �like strangeness or isospin	 for ordinary baryons in accord with
the experimental data� But quarks become coloured and number of them is
tripled� Let it be as we do not observe them on experiment�

�	 Problem of the mean life of �� meson
We have already mentioned that a simple model of �� meson decay based

on Feynman diagram with nucleon loop gives very good agreement with ex�
periment though it looks strange� Nucleon mass squared enters the denomi�
nator in the integral over the loop� Because of that taking now quark model
�transfer from mN � ���� GeV to mu � �����GeV of the constituent quark	
we would have an extra factor � ��& In other words quark model result would
give strong divergence with the experimental data� How is it possible to save
situation� Triplicate number of quark diagrams by introducing �colour� &&&
Really as �� �  the situation is saved�

�	 Problem with the hadronic production cross�section in e�e�

annihilation
Let us consider the ratio of the hadronic production cross�section of e�e�

annihilation to the well�known cross section of the muon production in e�e�

annihilation�

R �
��e�e� � hadrons	

��e�e� � ����	
�

It is seen from the Feynman diagrams in the lowest order in 


�

e�

e�

q

�q

�

e�

e�

��

��

that the corresponding processes upon neglecting �hadronization� of quarks
are described by similar diagrams� The di�erence lies in di�erent charges of
electrons�positrons	 and quarks� In a simple quark model with the pointlike
quarks the ratio R is given just by the sum of quark charges squared that is
for the energy interval of the electron�positron rings up to ��� GeV it should

��



be R � ��
�
	�����

�
	�����

�
	�	 � �

�
� However experiment gives in this interval

the value around ���� As one can see� many things could be hidden into the
not so understandable �hadronization� process �we observe �nally not quarks
but hadrons&	� But the simplest way to do has been again triplication of the
number of quarks� then one obtains the needed value� � � �

�
� ��

With the �discouvery� of the charmed quark we should recalculate the value
of R for energies higher then thresholds of pair productions of charm particles
that is for energies � � GeV� R � � � ����	� � ���

�
	� � ���

�

�
	 � �

�
	�	� � ��

�
�

Production of the pair of ��bb� quarks should increase the value R by �� which
proves to hardly note experimentally� Experiment gives above � GeV and p to
e�e� energies around ����� GeV the value ��� At higher energies in�uence
on R of the Z boson contribution �see diagram � is already seen

Z�

e�

e�

q� l

�q� �l

Thus introduction of three colours can help to escape several important and
even fundamental contradictions in particle physics�

But dynamic theory appears only there arrives quant of the �eld �gluon	
transferring colour from one quark to another and this quant in some way
acts on experimental detectors� Otherwise everything could be �nished at
the level of more or less good classi�cation as it succeeded with isospin and
hyper charge with no corresponding quanta	

There is assumption that dynamical theories are closely related to local
gauge invariance of Lagrangian describing �elds and its interactions with
respect to well de�ned gauge groups�

����� Gluon as a gauge 	eld

Similar to cases considered above with photon and � meson let us write a
Lagrangian for free �elds of ��couloured quarks qa where quark qa� a � �� �� �

��



is a ��spinor of the group SU��	C in colour space�

L� � �qa�x	����q
a�x	�mq�qa�x	q

a�x	�

This Lagrangian is invariant under global gauge transformation

q�a�x	 � ei��
k�k�a

b qb�x	

� where �kk � �� ����� are known to us Gell�Mann matrices but now in colour
space� Let us require invariance of the Lagrangian under similar but local
gauge transformation when 
k are functions of x�

q�a�x	 � ei��
k�x��k�a

b qb�x	�

or
q��x	 � U�x	q�x	� U�x	 � ei�

k�x��k�

But exactly as in previous case L� is not invariant under this local gauge
transformation

L�� � �qa�x	����q
a�x	 � �qa�x	�U�x	����U�x		

a
b �x	q

b�x	�

�mq�qa�x	q
a�x	�

In order to cancel terms breaking gauge invariance let us introduce massless
vector �elds Gk

�� k � �� ����� with the gauge transformation

�kG�k � U�kGkU y � �

gs

�U

�x�
U y�

Let us de�ne interaction of these �elds with quarks by Lagrangian

L � gs�qa�x	�G
k
��k	

a
b��q

b�x	�

to which corresponds Feynman graphs

G
�ba

q�a� q�b�

�




G �
�p
�

�
B�
G� � �	

p
�G� G� � iG� G
 � iG�

G� � iG� �G� � �	
p
�G� G� � iG

G
 � iG� G� � iG ��	p�G�

�
CA �

�

�
B�

D� G
��� G

���

G
��� D� G

���

G
��� G

��� D�

�
CA � ����	

where

D� �
�

�
�G

��� �G
���	 �

�



�G

��� �G
��� � �G���	�

D� � ��
�
�G

��� �G
���	 �

�



�G

��� �G
��� � �G���	�

��


�G

��� �G
��� � �G���	�

Final expression for the Lagrangian invariant under local gauge transforma�
tions of the non�abelian group SU��	C in colour space is�

LSU���C � �qa�x	����q
a�x	 �mq�qa�x	q

a�x	�

gs�qa�x	�G
k
��k	

a
b��q

b�x	� �

�
�F k��F k

���

where F k��� k � �� �� ����� is the tensor of the free gluon �eld transforming
under local gauge transformation as

�kF
k�
�� � U y�x	�l�x	F l

��U�x	�

It is covariant under gauge transformations U y �F �
��U � �F�� � Let us write in

some detail tensor of the free gluon �eld ���F�� � �kF
k
�� � ,F�� � ���i� �j� �

�i�ijk�k� i� j� k � �� �� ����	�

�F k
�� � ���G

k
� � ��G

k
�	� �gsifkijGi

�G
j
�

or
,F�� � ��� ,G� � �� ,G�	� gs� ,G�� ,G� �

��



and prove that this expression in a covariant way transforms under gauge
transformation of the �eld G�

U y��� ,G�
� � �� ,G

�
�	U �

� ��� ,G� � �� ,G� 	 � �U
y��U� ,G��� �U y��U� ,G� ��

U y� ,G�
��
,G�
� �U � � ,G�� ,G� � �

�

gs
�U y��U� ,G��� �

gs
�U y��U� ,G� ��

Finally
U y �F �

��U � U y��� ,G�
� � �� ,G

�
� � gs� ,G

�
��
,G�
� �	U �

� �� ,G� � �� ,G� � gs� ,G�� ,G� � � �F���

The particular property of non�Abelian vector �eld as we have already seen
on the example of the � �eld is the fact that this �eld is autointeracting that
is in the Lagrangian in the free term ���	�	j�F �� j� there are not only terms
bilinear in the �eld G as it is in the case of the �Abelian	 electromagnetic
�eld but also ��and �� linear terms in gluon �eld G of the form G�G���G�

and G�
�G

�
� to which the following Feynman diagrams correspond�

Gi Gj

Gk

Gi

Gi

Gk

Gk

This circumstance turns to be decisive for construction of the non�Abelian
theory of strong interaction � quantum chromodynamics�

The base of it is the asymptotic freedom which can be understood from
the behaviour of the e�ective strong coupling constant of quarks and gluons

s � g�s	�� for which


s�Q
�	 � 
s�

�

� � ���NC � �nf 	ln�Q�	!�	
�

where Q� is momentum transfer squared� �� is a renormalization point� !
is a QCD scale parameter� NC being number of colors and nf number of
�avours� With Q� going to in�nity coupling constant 
s tends to zero& Just

��



this property is called asymptotic freedom��Instead in QED �quantum elec�
trodynamics	 with no colors it grows and even have a pole�	 But one should
also have in mind that in the di�erence from QED where we have two ob�
servable quantities electron mass and its charge �or those of �� and � �leptons
	 in QCD we have none� Indeed we could not measure directly either quark
mass or its coupling to gluon�

Here we shall not discuss problems of the QCD and shall give only some
examples of application of the notion of colour to observable processes�

����� Simple examples with coloured quarks

By introducing colour we have obtained possibility to predict ratios of many
modes of decays and to prove once more validity of the hypothesis on exis�
tence of colour�

Let us consider decay modes of lepton � discouvered practically after J	�
which has the mass ����� MeV �exp�������� ��������	 MeV	� Taking quark
model and assuming pointlike quarks �that is fundamental at the level of
leptons	 we obtain that �� lepton decays emitting � neutrino �� either to
lepton �two channels� e���e or �����	 or to quarks �charm quark is too heavy�
strange quark contribution is suppressed by Cabibbo angle and we are left
with u and d quarks	�

W

��

��

��� e�

���� ��e W

��

��

dC

�u

From our reasoning it follows that in absence of color we have two lepton
modes and only one quark mode and partial hadron width Bh should be
equal to ��� of the total width while with colour quarks we have two lepton
modes and three quark modes leading to Bh � ����

Or in other words de�nite lepton mode would be �� " in absence of
colour and �� " with the colour� Experiment gives �� � �� � ��� � �� �
���� �� � �� �	" and �� � e� � ��e � �� � ���� �� � �� ��	"� supporting
hypothesis of � colours�

�



The W decays already in three lepton pairs and two quark ones

W� ��e� ���� ���

e�� ��� ��

W� dC � sC

�u� �c

This means that in absence of colour hadron branching ratio Bh would be ��"
while with three colours around 

"� Experiment gives Bh � �
�� �� �� �	"
once more supporting hypothesis of ��coloured quarks�

Z boson decays already along 
 lepton and � quark modes�

Z� e�� ��� ��

e�� ��� ��

Z� ��e� ���� ���

�e� ��� ��

�



Z� u� d� s� c� b

�u� �d� �s� �c��b

Thus it is possible to predict at once that in absence of colour hadron channel
should be �������" of the total width of Z while with three colours number
of partial lepton and colour quark channels increase up to 
�������� and
hadron channel would be ��������" � Experimentally it is �
�������"	�

�



Chapter �

Conclusion

In these chosen chapters on group theory and its application to the particle
physics there have been considered problems of classi�cation of the particles
along irreducible representations of the unitary groups� have been studied
in some detail quark model� In detail mass formulae for elementary parti�
cles have been analyzed� Examples of calculations of the magnetic moments
and axial�vector weak constants have been exposed in unitary symmetry and
quark model� Formulae for electromagnetic and weak currents are given for
both models and problem of neutral currents is given in some detail� Elec�
troweak current of the Glashow�Salam�Weinberg model has been constructed�
The notion of colour has been introduced and simple examples with it are
given� Introduction of vector bosons as gauge �elds are explained�

Author has tried to write lectures in such a way as to give possibility
to eventual reader to evaluate by him� or herself many properties of the
elementary particles�

�


