©hoo$e ЛÄнgიAge©///₾ÄngიAge® Ekohomei©Å TÅLKiNg ი.ბ.м.ლ.
Ядерные двигателиВведение Двигательные
установки на борту транспортного
средства предназначены для создания
силы тяги или момента импульса. В
последние десятилетия все большее
внимание уделяется таким характеристикам
как расход топлива и создаваемая тяга.
Все большее внимание начинает уделяться
разработкам ядерных двигателей на
транспортных средствах. Одной из наиболее
перспективных областей применения
ядерных ракетных двигателей является
космонавтика. В
настоящее время для полетов на другие
планеты, не говоря уж о звездах, применение
жидкостных ракетных двигателей и
твердотопливных ракетных двигателей
становится все более невыгодным, хотя
и было разработано множество ракетных
двигателей. 1. Силовые установки Ядерная
силовая установка
(ЯСУ) —
это силовая установка, работающая на
энергии цепной реакции деления ядра.
ЯСУ состоит
из ядерного реактора и паро- или
газотурбинной установки, в которой
тепловая энергия, выделяющаяся в
реакторе, преобразуется в механическую
или электрическую энергию. Преимуществами
подобной установки являются неограниченная
автономность передвижения (дальность
хода), и большая мощность двигателей: и
как следствие, возможность длительно
использовать высокую скорость движения,
транспортировать более тяжёлые грузы
и способность работать в тяжёлых
условиях.
Атомный
флот.
Название атомохо́д
(атомное судно) носят суда, использующие
ядерную энергетическую установку в
качестве двигателя. Различают атомоходы
гражданские (атомные ледоколы, транспортные
суда) и военные (авианосцы, подводные
лодки, крейсеры, тяжёлые фрегаты).
Первым в мире атомоходом является
подводная лодка «Наутилус», построенная
в 1954 году в США.
2. Ядерные ракетные двигатели (ЯРД) Ракетный
двигатель является единственным почти
освоенным способом вывода полезной
нагрузки на орбиту Земли [1, 3]. За счёт
преобразования исходной энергии в
кинетическую энергию реактивной струи
реактивного тела в ракетном двигателе
возникает сила тяги. Классификацию
ракетных двигателей можно провести по
виду энергии, которая преобразуется в
кинетическую энергию реактивной струи.
Различают такие виды, как химические,
ядерные и электрические ракетные
двигатели.
2.1. Устройство и принцип действия ЯРД. Ядерные
ракетные двигатели бывают газофазными,
жидкофазными и твердофазными
в зависимости от агрегатного состояния
ядерного топлива. Также они могут
подразделяться на жидкостные и
импульсно-взрывные. Жидкостные ядерные
ракетные двигатели используют нагрев
жидкого рабочего тела в нагревательной
камере от ядерного
реактора
и вывод газа через сопло, а импульсно-взрывные
основаны на создании ядерных взрывов
малой мощности через равные промежутки
времени.
Реакция дейтерий + тритий (топливо D-T)2H + 3H = 4He + n + 17.6 МэВ Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты относительно дёшевы. Недостаток её — весьма большой выход нежелательной (и бесполезной для прямого создания тяги) нейтронной радиации, уносящей большую часть выходной энергии реакции и, как следствие, резко снижающей КПД двигателя. Тритий радиоактивен, период его полураспада около 12 лет, то есть долговременное хранение трития невозможно. В то же время, возможно окружить дейтериево-тритиевый реактор оболочкой, содержащей литий: последний, в результате облучения нейтронным потоком, превращается в тритий, что приводит к замыканию топливного цикла, поскольку реактор работает в режиме размножителя (бридера). Таким образом, топливом для D-T-реактора фактически служат дейтерий и литий. Реакция дейтерий + гелий-32H + 3He = 4He + p + 18.3 МэВ Условия её достижения значительно сложнее. Гелий-3, кроме того, редкий и чрезвычайно дорогой изотоп. В промышленных масштабах на настоящее время не производится. Кроме того, что энергетический выход этой реакции выше, чем у D-T-реакции, она имеет следующие дополнительные преимущества:
При реакции D-3He в форме нейтронов выделяется всего около 5% мощности (против 80% для D-T). Около 20% выделяется в форме рентгеновского излучения. Вся остальная энергия может быть непосредственно использована для создания реактивной тяги. Таким образом, реакция D-3He намного более перспективна для применения в реакторе ТЯРД. Другие виды реакцийРеакции между ядрами дейтерия (D-D, монотопливо): 2H + 2H → 3He + n + 3.3 МэВ, 2H + 2H →> 3H + p + 4 МэВ. Нейтронный
выход в данном случае весьма значителен.
p + 6Li → 4He (1.7 MeV) + 3He (2.3 MэВ) 3He + 6Li → 24He + p + 16.9 MэВ p + 11B → 34He + 8.7 MэВ
Рабочее
тело, контактируя с ТВЭЛом, поглощает
энергию и нагревается, увеличивается
в объеме, после чего выходит через сопло
двигателя под высоким давлением. 2.2 Ядерный импульсный двигатель В
основе импульсного двигателя для
космического аппарата лежит концепция
атомного взрыва. Атомные заряды мощностью
примерно в килотонну
на этапе взлёта должны были взрываться
со скоростью один заряд в секунду.
Ударная волна — расширяющееся
плазменное
облако — должна была приниматься
«толкателем» — мощным металлическим
диском с теплозащитным покрытием, и,
потом, отразившись от него, создать
реактивную тягу. Импульс, принятый
плитой толкателя, через элементы
конструкции передавался кораблю. Затем,
когда высота и скорость вырастут, частоту
взрывов можно было уменьшить. При взлёте
корабль должен был лететь строго
вертикально, с целью минимизировать
площадь радиоактивного загрязнения
атмосферы. 2.3 Другие разработки
В 1960-х
годах США были на пути к Луне. Менее
известным является тот факт, что на
полигоне Невады учёные работали над
одним амбициозным проектом — полётом
на Марс на ядерных двигателях. Проект
был назван NERVA.
В январе 1965 года были произведены
испытания ядерного ракетного двигателя
под кодовым названием «КИВИ» (KIWI). При
испытаниях реактору ЯРД специально
позволили перегреться. При температуре
в 4000 °C реактор взорвался. Пять месяцев
спустя произошла настоящая авария,
когда перегрелся ядерный двигатель
другой сборки, который носил кодовое
название Феб (Phoebus).
Двигатели,
разработанные в рамках проекта Pluto,
планировалось устанавливать на крылатые
ракеты, которые в 1950-х годах создавались
под обозначением SLAM (Supersonic Low Altitude Missile
(сверхзвуковая маловысотная ракета)).
Планировалось построить ракету длиной
26.8 метра, диаметром три метра, и массой
в 28 тонн. В корпусе ракеты должен был
располагаться ядерный боезаряд, а также
ядерная двигательная установка, имеющая
длину 1.6 метра и диаметр 1.5 метра. На фоне
других размеров установка выглядела
весьма компактной, что и объясняет её
прямоточный принцип работы.
СССР
оставался верной идеи создания ЯРД
прямоточной конструкции значительно
дольше, чем США, закрыв проект только в
1985 году. Но и результаты получились
значительно весомее. Так, первый и
единственный советский ядерный ракетный
двигатель был разработан в конструкторском
бюро «Химавтоматика», Воронеж. Это
РД-0410 (Индекс ГРАУ — 11Б91, известен также
как «Ирбит» и «ИР-100»). Технические характеристики РД 0410 [9]:
Также в настоящее время ведется разработка ядерной электродвигательной установки — двигательной установки космического аппарата, включающая в себя комплекс бортовых систем, таких как: электрический ракетный двигатель, система электропитания, обеспечиваемого ядерным реактором, система хранения и подачи рабочего тела, система автоматического управления. 3. Проблема межпланетных полетов3.1 Использование гравитационного маневра при полете к МарсуРассмотрим изменение характеристической скорости при полёте с околоземной круговой (опорной) орбиты к Марсу с использованием гравитационного манёвра у Луны [7].
Для перехода с круговой орбиты Земли вокруг Солнца на эллиптическую орбиту перелёта к Марсу (орбиту Гомана) необходима дополнительная характеристическая скорость (рис. 6) [8]:
где
Vкр1 – первая
(круговая) скорость относительно Солнца
на орбите Земли, R1
– радиус орбиты Земли, R2
– радиус орбиты Марса.
Здесь V1 – скорость отлёта из неподвижной относительно Земли точки, расположенной на круговой околоземной орбите. Учитывая, что мы уже движемся по этой орбите с круговой скоростью, для окончательной скорости отлёта к Марсу требуется скорость
Аналогично для перехода с эллиптической орбиты на орбиту вокруг Марса имеем
где Здесь
– первая (круговая)
скорость относительно Марса, – первая
(круговая) скорость на орбите Земли
(рис. 6),
– первая (круговая)
скорость на орбите Марса (рис. 6),
– первая
(круговая) скорость относительно Земли, μ = GM
– произведение
массы тела M
на гравитационную постоянную G.
Значения
параметра
μ
для Солнца, Земли и Марса С учётом дополнительных затрат на управление и ориентацию (добавляем 5%) получим полную характеристическую скорость: Vхар1 = 1.05·(ΔVз + ΔVмар). Если использовать гравитационный манёвр, то характеристическая скорость уменьшится Vхар2 = Vхар1 – ΔVграв Соответственно выигрыш в скорости составит
Проведём расчёт характеристической скорости с учетом следующих значений радиусов орбит движения Земли и Марса вокруг Солнца: R1 = 1.5·1011 м, R2 = 2.28·1011 м, а также примем значения радиусов околоземной орбиты и орбиты около Марса R01 = 6.8·106 м, R02 = 3.4·106 м Максимальная скорость, которую мы можем получить при использовании гравитационного маневра у Луны, равняется: ΔVграв = 1680 м/с Тогда имеем ΔVз = 3561 м/с, ΔVмар
= 2133 м/с, Выигрыш в скорости при использовании гравитационного маневра ΔV% = 26.8%. При дальнейших расчетах будем использовать значение скорости ΔVхар2 так как это позволяет нам сэкономить топливо. 3.2 Время полета к Марсу по орбите ГоманаТакже необходимо рассчитать время полета к Марсу по выбранной нами траектории. Для этого используем формулы [8]:
Тогда время полета составит: Т ≈ 260 суток. 3.3 Сравнение затрат топлива жидкостного (Ж) и твердофазного ядерного (ТЯ) ракетного двигателя при полете к МарсуДля нахождения массы топлива используем формулу К. Э. Циолковского [3]: Vхар2 = Vк – V0 = W ln(1 + Mт/Mк),
где
Mт − масса
топлива,
Mк −
конечная масса ракеты (без топлива),
Vк −
конечная скорость полета,
V0 −
начальная скорость,
W −
скорость истечения газов из двигателя.
Тогда
Здесь: kТО – весовой коэффициент топливного отсека, kсу – весовой коэффициент системы управления, kду – весовой коэффициент двигательной установки, n – коэффициент перегрузки, g0 – ускорение силы тяжести, Mпг – масса полезного груза. Также можно рассчитать какой процент топлива мы сэкономим при использовании ТЯРД по формуле:
Произведем расчеты при следующих параметрах для ЖРД и ЯРД: ЖРД: W = 4599 м/с, kду =
0.001, kсу = 0.01, kТО = 0.1 Тогда имеем: Dж = 1.65, Dя = 0.63, Mж = 269903 кг, Mя = 105994 кг
Соответствующая
экономия топлива составит ΔM = 69.7%. ЗаключениеПреимущество, заключающееся в высоком показателе удельного импульса ядерных ракетных двигателей по сравнению с химическими, очевидно. Для твердофазных моделей величина удельного импульса составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Однако, когда речь идет о ядерном топливе, никогда не следует забывать о пагубном воздействии на экологию нашей планеты. Так и в случае с ядерными ракетными двигателями необходимо учитывать загрязнение атмосферы Земли. Поэтому, несмотря на существование действующих моделей ядерных ракетных двигателей, пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей высочайший, однако, и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах. Литература
|