©hoo$e ЛÄнgიAge©///₾ÄngიAge® Ekohomei©Å TÅLKiNg ი.ბ.м.ლ.

geo.rf.gd

   

К столетию открытия космических лучей,
или История, полная загадок

Опубликовано в еженедельнике ОИЯИ "Дубна"  № 5-6 (2013)

    В 1912 году были сделаны два выдающихся открытия, изменивших наше мировоззрение: открытие космических лучей Виктором Гессом и открытие атомного ядра Эрнестом Резерфордом - лауреатом Нобелевской премии по химии 1908 года. Признание значимости этих открытий научной общественностью и Нобелевским комитетом пробивалось с трудом: только через 24 года, в 1936 году В.Гессу была присуждена эта премия, да и то, как теперь известно, "со скрипом". Приходится удивляться, но открытие атомного ядра Нобелевской премии не заслужило вообще.

Предыстория

Генри Беккерель
1852-1908.
    Как это было? Оказывается, космические лучи были открыты с помощью школьного электроскопа. Еще в 1785 году Ч.А.Кулон представил три доклада по электричеству и магнетизму Французской королевской академии наук. В одном из них он описал свои эксперименты, показавшие, что изолированные наэлектризованные тела спонтанно разряжаются и что плохая изоляция не влияет на это явление. Прошло 50 лет, Майкл Фарадей в 1835 году, а затем Вильям Крукс в 1879-м показали, что скорость разряда уменьшается, когда уменьшается давление воздуха: ионизация воздуха является, таким образом, непосредственной причиной разряда. Но что ионизует воздух? Попытки ответить на этот вопрос и проложили в начале 20-го века путь к революционному научному открытию - космическим лучам. В 1896 году Генри Беккерель открыл спонтанную радиоактивность. Вскоре после этого было обнаружено, что заряженный электроскоп быстрее разряжается в присутствии радиоактивного материала. Таким образом, скорость разряда электроскопа была использована, чтобы измерять уровень радиоактивности.
Юлиус Элстер и Ганс Гейтель улучшили технику изоляции электроскопа.
    После открытия радиоактивности все верили в то, что атмосферное электричество - ионизация воздуха вызывается только радиацией из радиоактивных элементов в земле или радиоактивных газов в воздухе.
    Электроскоп стал играть важную роль во многих экспериментах начала 20-го века. Около 1900 года Чарльз Вильсон из Шотландии и независимо Юлиус Элстер и Ганс Гейтель улучшили технику тщательной изоляции электроскопа в замкнутом сосуде и тем самым его чувствительность. Они провели измерения скорости спонтанного разряда и пришли к заключению, что источник ионизации находится вне сосуда и что часть этой радиоактивности является сильно проникающей.

 

 

Чарльз Вильсон.

   Чарльз Вильсон в 1901 году сделал по тем временам фантастическое предположение о внеземной природе наблюдаемой радиации, имеющей исключительно высокую проникающую силу. Он провел исследования в туннелях, но не обнаружил уменьшения скорости ионизации, что противоречило его гипотезе, и она была забыта на многие годы.
    Эрнест Резерфорд и Генри Кук в 1903-1906 годах провели количественные измерения: в электроскопе, защищенном металлическими стенками толщиной в несколько сантиметров, ионизация воздуха изменялась незначительно. Этот вывод был подтвержден измерениями Д.Маклена и Ф.Буртона, которые погрузили электроскоп в бак с водой.

 

 

 

Мария и Пьер Кюри.
    Возник очевидный вопрос о природе этой радиации: имеет ли она земное или внеземное происхождение. Простейшей гипотезой было, что это связано с радиоактивными элементами в земной коре и воздухе, о существовании которых стало известно после исследований естественной радиоактивности Марией и Пьером Кюри. Земная природа наблюдаемой радиации была общей точкой зрения, однако добиться экспериментальных доказательств оказалось нелегко.
    Были предприняты большие усилия, чтобы создать транспортабельный электроскоп в венской метеорологической группе, лидировавшей в то время в измерениях ионизации в атмосфере. Однако окончательная разработка такого инструмента принадлежит иезуитскому священнику и ученому Теодору Вульфу. В электроскопе Вульфа два металлических лепестка были заменены стеклянными проволочками, напыленными металлом и растянутыми пружинкой также из стекла. Показания электрометра считывались с помощью микроскопа. В 1909 году Теодор Вульф создал этот электрометр для измерения скорости образования ионов внутри герметически закрытого контейнера - и использовал его, чтобы измерить уровень радиации на верху Эйфелевой башни (300 м над землей) по сравнению с радиацией у ее основания.


Теодор Вульф и начерченный им электроскоп собственной конструкции.

    Предполагая гипотезу земного происхождения большей части ионизации, он ожидал увидеть существенное уменьшение ионизации на верху башни по сравнению с ее величиной на уровне земли. Однако уменьшение скорости ионизации оказалось слишком малым для подтверждения этой гипотезы. Величина радиации на высоте 300 м была всего лишь наполовину меньше ее величины на земле, в то время как ожидалось, что она должна быть всего лишь несколько процентов. Однако его статья, хотя и опубликованная в солидном журнале Physikalische Zeitschrift, не была воспринята.
    Наблюдения Вульфа были загадочны и требовали объяснения. Одним из возможных путей решения этой загадки было проведение измерений на больших высотах. К тому времени баллонные эксперименты использовались уже более 100 лет для исследования атмосферного электричества на высотах до 7000 м, и было очевидно, что именно они могут дать ответ на проблему происхождения проникающего излучения.
    В то же время Доменико Пачини в 1910 году, измеряя одновременно скорости ионизации над морем и на глубине 3 метра, пришел к выводу, что из уменьшения радиоактивности под водой следует, что определенная часть ионизации должна быть обусловлена другим источником, не зависимым от радиоактивности земли. Пачини писал: "Наблюдения, проведенные на море в течение 1910 г., позволяют заключить, что существенная часть всепроникающей радиации, которая обнаруживается в воздухе, имеет происхождение, не зависящее от прямого воздействия фактического вещества в верхних слоях земной коры... Чтобы это доказать, аппарат был закрыт в медный ящик и погружен на глубину 3 м".


Доменико Пачини проводит измерения с электроскопом в 1910 году.

    Однако физики не отказывались от гипотезы земного происхождения мистического проникающего излучения даже тогда, когда эксперименты ясно показали его независимость от радиоактивности земной коры. В обзоре Карла Курца была просуммирована ситуация на 1909 год. Наблюдаемый спонтанный разряд электроскопа совместим с гипотезами, что фоновое излучение существует даже в изолированном объеме и имеет проникающую компоненту - вероятно, гамма-лучи. Есть три возможных источника проникающего излучения: внеземное излучение (вероятно, от Солнца), радиоактивность земной коры, радиоактивность атмосферы.
    Из измерений ионизации в нижних слоях атмосферы Курц делал вывод, что неземное происхождение радиации маловероятно и почти вся радиация возникает из-за радиоактивности земной коры. Были проделаны расчеты уменьшения радиации с высотой, но их нелегко было проверить из-за трудности транспортировки инструмента и его недостаточной точности.

Балонные эксперименты

    Метеоролог Франц Линке сделал 12 баллонных полетов в 1900-1903 гг. в течение выполнения своих PhD-исследований в Берлинском университете и поднимался до высоты 5500 м с электроскопами конструкции Элстера и Гейтеля. Тезисы его работы не были опубликованы, но опубликованный отчет заключался словами: "...на высоте 1 км ионизация меньше, чем на поверхности, между 1 и 3 км имеет то же самое значение и становится больше в 4 раза на высоте 5,5 км... Ошибки измерений позволяют сделать только заключение, что причина ионизации должна быть найдена прежде всего в Земле". Никто позднее не ссылался на Линке - по-видимому потому, что он сделал правильные измерения, но пришел к неправильному выводу.
    Карл Бергвитц - ученик Элстера и Гейтеля поднялся в 1909 г. на аэростате и на высоте 1300 м обнаружил, что величина ионизации уменьшилась на 24 процента по сравнению с величиной на земле. Однако его результат был подвергнут сомнениям ввиду того, что электрометр сломался в течение полета. Позднее Бергвитц работал с электрометрами на земле и на высоте 80 м и не наблюдал существенного уменьшения ионизации. Примерно в это же время аналогичные результаты были получены в измерениях, проведенных Алфредом Гокелем из Фрайбурга (Швейцария). Он поднялся до высоты 3000 м. Именно он впервые ввел термин kosmische Strahlung или cosmic radiation. Таким образом, господствовала интерпретация, что радиоактивное излучение исходит с поверхности Земли, хотя баллонные результаты по-прежнему оставались загадкой.

Заинтересованная общественность провожает В.Гесса в один из первых полетов.
    В 1911 году Виктор Гесс совершил первые два полета. Перед 1-й мировой войной Австро-Венгрия была одной из европейских сверхдержав. Для его полетов были предоставлены аэростаты австрийской армии объемом около 2000 кубических метров. Целью уже 1-го полета было исследование зависимости проникающего излучения от высоты, приводящего к разряду электроскопа. Он достиг высоты около 1100 м и не обнаружил существенного изменения в интенсивности радиации по сравнению с измерениями на поверхности Земли. Однако это указывало на существование какого-то источника радиации в дополнение к гамма-лучам, возникающим при радиоактивных распадах в земной коре. Первые шесть полетов 1912 года проводились с базы вблизи Вены начиная с 17 апреля, когда происходило частичное солнечное затмение. Достигнув высоты 2750 м, он не обнаружил уменьшения проникающей радиации во время затмения. Напротив, он получил указание на ее увеличение на высоте около 2000 м.
    7 августа 1912 года состоялся последний из семи балонных полетов Виктора Гесса, которые он совершил в течение 1912 года. Использовалось три электроскопа Вульфа. Один из электроскопов был открыт на воздух. С учетом уменьшения давления этот электроскоп показывал двукратное увеличение ионизации на высоте 4000 м по сравнению с ионизацией на поверхности Земли. Это было свидетельством того, что радиация (Hohenstrahlung) попадает в атмосферу из внешнего пространства. Прежде чем доложить эти результаты, Гесс провел комбинированный анализ всех данных по своим полетам: на высотах выше 2000 м измеренный уровень радиации начинал расти. Между 3000 и 4000 м количество ионов возросло на 4 пары, и на высотах от 4000 до 5200 м достигало от 16 до 18 пар ионов в обоих детекторах.


Последний из полетов В.Гесса.

    Выводы Гесса: "Результаты представленных наблюдений наиболее легко могут быть объяснены в предположении, что излучение с очень высокой проникающей силой входит в нашу атмосферу сверху… Так как не обнаружено уменьшения излучения ни ночью, ни во время солнечного затмения, то трудно рассматривать Солнце в качестве источника этого излучения".


Таблица из рабочего журнала о последнем полете В.Гесса.

    В 1913-1914 гг. Вернер Кольстер подтвердил результаты и выводы Гесса, проведя измерения на высотах до 9200 м. Тогда же он обнаружил, что коэффициент поглощения космического излучения воздухом оказался в 8 раз меньше ожидемого в случае, если бы это были гамма-лучи, однако не придал этому значения. Его последний полет состоялся 28 июня 1914 года в день убийства в Сараево австрийского герцога Франца-Фердинанда и начала 1-й мировой войны, надолго прервавшей исследования этого загадочного явления.

Космические лучи: загадки остаются

    В.Гесс был удостоен Нобелевской премии за открытие космического излучения только в 1936 году. К тому времени его роль и фундаментальная важность этой "естественной лаборатории" стала очевидной, и он поделил эту премию с Карлом Андерсоном, который открыл позитрон в космическом излучении всего за 4 года до этого. Д.Пачини умер в 1934-м, и его вклад был почти забыт по совокупности исторических и политических обстоятельств.
    В 20-е годы термин "космические лучи" (cosmic rays) был введен в обращение Робертом Милликяном, который проводил измерения ионизации на больших глубинах и больших высотах. Он полагал, что его измерения доказывают: первичные космические лучи являются гамма-лучами, то есть энергичными фотонами, - и предположил их рождение в межзвездной среде в результате слияния атомов водорода в более тяжелые атомы (cosmic rays were the "birth cries of atoms" in our galaxy). Однако в 1927 году Дж. Клей провел измерения космической ионизации от острова Ява вблизи Австралии до города Генуя в Италии и обнаружил изменение интенсивности космических лучей в зависимости от широты, которая была подтверждена в других экспериментах. Уменьшение интенсивности космических лучей на экваторе указывало на то, что первичные космические лучи отклоняются геомагнитным полем и должны быть заряженными частицами, а не фотонами. В 1929 году В. Боте и В. Колхерстер обнаружили, что космические частицы способны пронизать золотую пластину толщиной 4,1 см. Было очевидно, что заряженные частицы с такой высокой энергией невозможно образовать фотонами в процессе межзвездного слияния атомов.
    Каков знак заряда космических частиц? Бруно Росси в 1930 году предсказал различие между интенсивностями космических лучей, приходящих с востока и запада, которая зависит от знака заряда первичных частиц - так называемый east-west effect. В нескольких независимых экспериментах было показано, что на самом деле интенсивность больше с запада, то есть большая часть первичных частиц являются положительными. Проводя свои east-west эксперименты в Эритрее, Б.Росси открыл широкие атмосферные ливни (ШАЛ) частиц, но не изучил это явление в деталях. Позднее, в 1936 году ШАЛ были переоткрыты и изучены Пьером Оже и Роландом Мазе. Во многих исследованиях с 1930 по 1945 гг. было показано, что первичные космические лучи являются в основном протонами, а вторичная радиация, возникающая в атмосфере, вызывается по большей части электронами, фотонами и мюонами. В 1948 году наблюдения с ядерной эмульсией, поднятой баллонами почти на границу атмосферы, показали, что приблизительно 10 процентов первичных частиц - это ядра гелия (-частицы) и 1 процент - ядра более тяжелых элементов, таких как углерод, железо и свинец.
    Загадка происхождения космических лучей не решена до конца до сих пор. В 1933 году, еще до открытия термоядерных процессов, Фриц Цвики и Вальтер Бааде первые высказали гипотезу о том, что космические лучи рождаются при вспышках сверхновых звезд, которые по современным представлениям происходят при коллапсе звезд после выгорания всего термоядерного топлива. Эта гипотеза получила различные теоретические и экспериментальные обоснования, в том числе с помощью измерения нейтринного сигнала от вспышки Сверхновой 1987 года, произошедшей в Большом Магеллановом облаке - спутнике нашей галактики Млечный путь.

Вклад советских физиков в ранние исследования космических лучей

Дмитрий Владимирович Скобельцын.
    Д.В.Скобельцын первый использовал идею наблюдения комптоновских электронов в камере Вильсона и, изучая в 1927 году комптоновский эффект, провел наблюдения треков релятивистских частиц из атмосферы. Было показано, что импульс этих заряженных частиц превышает 20 МэВ/с и они не могут быть продуктами распада радиоактивных элементов. Д.В.Скобельцын обнаружил также, что такие объекты часто появляются в камере Вильсона группами по несколько частиц. Это стало первым наблюдением ливней космических лучей. Еще в 1923 году он обнаружил в камере Вильсона, помещенной в магнитное поле, космические частицы, которые ведут себя как электроны, но имеют "неправильный" заряд. Этот результат, доложенный им на международной конференции в 1928 году в Лондоне, остался загадочным. Он не привлек достаточно внимания, хотя уравнение Дирака, теоретически допускающее существование античастиц, было представлено на той же конференции.

    Позитрон был переоткрыт в 1933 году К.Андерсоном в аналогичном опыте с камерой Вильсона в магнитном поле.

Сергей Николаевич Вернов.

   С.Н.Вернов, ученик Д.В.Скобельцына, начал изучать космические лучи в 1931 году. Разработка им нового метода стратосферных исследований с помощью шаров-радиозондов заложила принципиально новую экспериментальную базу для исследований. 1 апреля 1935 года он выполнил измерения первичного космического излучения на высоте 13,6 км, используя счетчики Гейгера в схеме совпадений, чтобы избежать измерения вторичных частиц от ливней вторичных частиц, образующихся в атмосфере.

 

 

 

Заключение

    После открытия позитрона космические лучи долгое время оставались фабрикой новых открытий: в 1937 г. был открыт мюон (µ-мезон), в 1947-м - пион (π-мезон) и каон (K-мезон), в 1951-м - Λ-гиперон и т.д.
    В 1965 году было открыто РМИ - реликтовое микроволновое излучение. Вскоре после этого Грейзеном, Зацепиным и Кузьминым был предсказан ГЗК-эффект - обрезание спектра космических лучей при энергии 4·1019 эВ из-за взаимодействия первичных протонов с РМИ-фотонами. Обнаружение Джоном Линсли космической частицы с энергией 3·1020 эВ на его установке Волкано Ранч в 1963 году и космических лучей сверхвысокой энергии в последующих экспериментах являются одной из нерешенных до сих пор загадок современной астрофизики. На их решение нацелены работающие в настоящее время гигантские детекторы Auger в Аргентине и ТА в США, а также готовящийся к запуску в этом году космический детектор ТУС, созданный с участием ОИЯИ, и будущий более совершенный космический детектор JEM-EUSO.
    В декабре 2012 года в Лаборатории ядерных проблем имени В.П.Джеелепова состоялся семинар, посвященный 100-летнему юбилею открытия космических лучей, на котором Артур Ткаченко, Андрей Гринюк и Светлана Биктемерова представили доклады по подготовке в ОИЯИ космических экспериментов НУКЛОН, ТУС и JEM-ЕUSO, а также прозвучали доклады Баира Шайбонова и Георгия Шелкова о последних результатах подводного нейтринного эксперимента БАЙКАЛ и об образовательном проекте ОИЯИ "Ливни знаний".

Леонид ТКАЧЕВ


В обзоре использованы материалы:

Alessandro De Angelis. Spacepart conference. CERN, November 2012; CERN Courier, July/August 2012, p.52.

James W. Cronin. The Highest Energy Cosmic Rays: Some Historical Perspectives. 30th ICRC, Merida, Mexico, 2007.


 

На головную страницу

 

Top.Mail.Ru