Во Внутреннем детекторе и соленоиде реконструируются и измеряются треки заряженных частиц с поперечными импульсами > 0,5 ГэВ/с в интервале псевдобыстрот |η| < 2,5. Эффективность реконструкции при малых рт ограничена присутствием большого количества вещества в объеме Внутреннего детектора. Для определения разрешения при измерении поперечных импульсов треков использовались отдельные прямо рожденные частицы с рт выше 1 ГэВ/с и частицы струй. Величины разрешения аппроксимировались выражением
σx = σx(∞)(1 + px/рт)
Оно применимо как для треков с очень большими (бесконечными) импульсами, где разрешение определяется в основном разрешением детекторов (σх(∞)), так и для низкоэнергичных треков, где основную погрешность вносит многократное рассеяние в веществе детектора (рх учитывает реальный рт трека). В таблице 10.1 величины разрешений (RMS) при значении рх, когда вклад в разрешение от многократного рассеяния равен вкладу от разрешения детекторов, и для области центральных псевдобыстрот, где эффект вещества минимален, и для передней области с максимальным количеством вещества. Разрешение измерения поперечного импульса и углов получено для треков мюонов в первых трех строках, а разрешение для измерения прицельного параметра приведено для пионов (две нижние строки).
Таблица 10.1.
Отметим, что сигналы TRT используются только для треков с |η| < 2,0.
При измерении треков, в первую очередь лептонов, важно правильное определение
знака электрического заряда. Для треков мюонов знак заряда определяется с
достаточной точностью в мюонной системе до самых больших значений импульсов. Для
электронов он может быть измерен лишь во Внутреннем детекторе. На рис.10.1
приведены вероятности ошибочного измерения заряда для мюонов и электронов с |η|
< 2,5 в зависимости от их поперечного импульса (слева) и значения псевдобыстроты
при рт = 2 ТэВ (справа). Видно, что для электронов с рт
менее 1 ТэВ вероятность правильного определения заряда высока.
Эффективности реконструкции треков различных частиц приведены на рис.10.2.
Для пионов дополнительным эффектом, уменьшающим эффективность, кроме
многократного рассеяния, служит взаимодействие с веществом детектора. Для
электронов существенен дополнительный вклад тормозного излучения. Характер
зависимости от псевдобыстроты отражает изменение количества вещества в
детекторе. Электроны, выходя за пределы SCT, теряют в среднем от 20 до 50% своей
энергии. Функцию идентификации электронов при импульсах до 25 ГэВ/с выполняет
TRT.
Рис. 10.1 Вероятность ошибочного измерения заряда трека мюона и электрона в зависимости от поперечного импульса трека (слева) и псевдобыстроты для треков с рт = 2 ТэВ. |
Рис. 10.2. Эффективности реконструкции треков мюонов, пионов и электронов с рт = 5 ГэВ/с (слева) и треков пионов с рт = 1, 5 и 100 ГэВ/с. |
Величины относительного разрешения при измерении поперечных импульсов мюонов в зависимости от псевдобыстроты частицы показаны на рис. 10.3.
Рис.10.3. Относительное разрешение при измерении поперечных импульсов мюонов при значениях рт = 1, 5 и 100 ГэВ/с в зависимости от псевдобыстроты частицы. |
Важной характеристикой является точность восстановления координаты точки соударения протонов, найденной по трекам вторичных частиц. На рис.10.4 показаны распределения первичных вершин взаимодействий для событий разных типов в поперечной плоскости и по оси пучка.
Рис.10.4. Разрешение восстановление координат точки соударения протонов в событиях с рождением пары топ-кварков и бозона Хиггса, распадающегося на два фотона: по переменной х в поперечной плоскости (слева) и по продольной переменной z в мм. |
Измерение поперечного импульса мюонов по величине прогиба траектории в мюонном спектрометре зависит от точности камер и знания их относительного положения (выстроенности детектора). Разрешение этих измерений показано на рис.10.5. Детектор оптимизирован для мюонов с рт ~ 100 ГэВ/с. При меньших импульсах одиночных мюонов результаты хуже за счет флюктуаций потерь в калориметре, при больших - за счет разрешения камер MDT. Для объединенных треков при малых рт разрешение определяется Внутренним детектором, где при рт менее 10 ГэВ/с доминирует вклад многократного рассеяния.
Рис.10.5. Разрешение в % при измерении импульсов одиночных мюонов в мюоном спектрометре (stand-alone) и при объединении данных спектрометра и Внутреннего детектора (combined) для центральной |η| < 1,1(слева) и передней |η| > 1,7 областей. |
Измерение энергии электронов и фотонов
Разрешение при измерении энергии электронов и фотонов показано на рис. 10.6.
Рис.10.6. Разрешение при измерении энергии электронов и фотонов с энергией 100 ГэВ в зависимости от их псевдобыстроты. |
Величина разрешения определяется степенью структурированности ЕМ калориметра и качеством его калибровки. Область ухудшения разрешения при |η| = 1,5 соответствует переходу от барреля к торцевой части и исключается при проведении анализа данных. Зависимость разрешения от энергии электронов и фотонов показана на рис. 10.7 для разных значений псевдобыстроты.
Рис.10.7. Зависимость разрешения при измерении энергии от величины энергии электронов (слева) и фотонов при значениях псевдобыстроты |η| = 0,3, 1,1 и 2,0. |
Реконструкция струй
Реконструкция струй использует высокую степень структурированности
калориметров ATLAS. Программное обеспечение позволяет применять различные
алгоритмы выделения струй и работать с любыми входными объектами,
характеризуемыми четырех–импульсами. Два основных алгоритма реконструкции – 1) с
фиксированным конусом и 2) с последовательной рекомбинацией. Оба алгоритма
используются в двух конфигурациях. В первом случае для выделения узких струй при
исследовании спектроскопии W или t-рождения, а также кандидатов в события
суперсимметрии с большим количеством струй. Во втором случае для выделения
широких струй при исследовании КХД-процессов, двухструйного рождения и
множественного образования струй при светимости
≤ 1033см-2
с-1. Конусный алгоритм использует два параметра: пороговую поперечную
энергию в начальной ячейке Ет = 1 ГэВ и раствор конуса ΔR = 0,4 для
поиска узких струй и 0,7 для поиска широких. Величина ΔR = √((Δη)2 +
(Δφ)2). В обоих случаях применяется расщепление и объединение струй
при пороге на их перекрытие в 50%. Может использоваться также версия кт
алгоритма реконструкции струй. Конусный алгоритм вследствие своего
быстродействия используется также в триггере высокого уровня.
Все измерения в ячейках калориметра калибруются с использованием весовых
функций, зависящих от геометрии и положения ячейки и уровня шумов. Основными
требованиями к сигналам от струй после калибровки является линейная зависимость
отклика калориметра от энергии струи во всем измеряемом диапазоне энергий,
однородность отклика в зависимости от направления струи и стандартное
разрешение. Линейность отклика калориметра демонстрируется на рис.10.8(а) для
двух интервалов псевдобыстроты показаны величины: отношение энергии, измеренной
в калориметре, к истинной энергии струи, нижние точки до калибровки, верхние
после глобальной калибровки.
Рис.10.8.(а) Линейность расчетного отклика калориметра в зависимости от энергии струи Еtruth. |
Однородность углового отклика в двух интервалах поперечных энергий струй Ет для конусных алгоритмов с ΔR = 0,4 и 0,7 показана на рис.10.8(б). Нарушения однородности в двух переходных областях по |η| более заметны при меньших энергиях струй.
Рис.10.8(б). Однородность углового отклика в двух интервалах поперечных энергий струй Ет для конусных алгоритмов с ΔR = 0,4 и 0,7. |
На рис.10.8(в) приведено разрешение по энергии струй в зависимости от теоретического значения псевдобыстроты (или угла) струи |η|. Все результаты получены для процесса рождения двух КХД струй.
Рис.10.8(в) Разрешение по энергии струй в зависимости от угла |η|. |
Кроме представленных параметров, качество реконструкции струй
определяется дополнительными требованиями, предъявляемыми в процессе физического
анализа. К ним относятся эффективность выделения струй, чистота набора,
применимость вето и определение типа струи, ее принадлежности тому или иному
физическому объекту. Определяются эти параметры для конкретных физических
процессов.
На рис.10.9 для примера показана эффективность реконструкции струй для
двух алгоритмов в процессе рождения бозона Хиггса через механизм слияния
векторных бозонов в зависимости от расчетной поперечной энергии струи рт.
Распад бозона Хиггса с массой 120 ГэВ происходит на два τ-лептона. Видно, что
для струй с рт выше 40 ГэВ оба алгоритма дают близкие результаты. Для
меньших энергий их эффективность отличается. При малых энергиях ( > 10 ГэВ)
примесь ложных струй велика и составляет в центральной области, например, 30% –
45% для указанных алгоритмов.
Рис.10.9. Эффективность реконструкции струй для двух конусных алгоритмов с ΔR = 0,7 в процессе рождения бозона Хиггса через механизм слияния векторных бозонов в зависимости от расчетной поперечной энергии струи рт. |
Измерение недостающей поперечной энергии
При измерении недостающей поперечной энергии особую важность имеет линейность отклика калориметров. На рисунке 10.10 показана эта величина для распада бозона Хиггса с массой 800 ГэВ два τ-лептона.
Рис. 10.10. Линейность отклика калориметра при измерении недостающей поперечной энергии в процессе распада бозона Хиггса А на два τ-лептона. |
При измерении недостающей энергии особенно важна калибровка калориметра.
Разрешение определения двух компонент вектора недостающей энергии в
поперечной плоскости (х,y) в зависимости от суммарной измеренной поперечной
энергии в калориметре ∑Ет для разных физических процессов приведена на
рис.10.11. Измерение компонент этого вектора дает возможность определить
направление Етmiss. Для значений Етmiss выше примерно 100 ГэВ погрешность
определения угла составляет 100 мрад. В некоторых случаях параметры Етmiss могут
использоваться для вычисления эффективной массы объектов.
Важной задачей при реконструкции струй является идентификация адронных
распадов τ-лептонов. Они выделяются путем поиска узкого кластера энергии в
калориметре, сопровождаемого малым количеством треков во Внутреннем детекторе.
Другим способом идентификации струй является выделение струй b-кварков.
Рис.10.11. Разрешение определения двух компонент вектора недостающей энергии в поперечной плоскости (х,y) в зависимости от суммарной измеренной поперечной энергии в калориметре ∑Ет для разных физических процессов. |
Идентификация струй b-кварков
Возможность идентификации адронных струй тяжелых кварков необходима для изучения многих процессов: рождения t-кварков, поиска бозона Хиггса и новой физики вне Стандартной модели. Струи реконструируются в калориметре стандартными алгоритмами. Рассматриваются в качестве кандидатов в струи b-кварков струи с рт > 15 ГэВ и |η| < 2,5. Треки во Внутреннем детекторе относятся к струе, если их расстояние от оси струи R < 0,4. Не учитываются наложения событий. В расчетах модели кварк b или с (или τ-лептон) считается относящимся к струе, если его поперечный импульс более 5 ГэВ/с и он отстоит от оси струи на ΔR < 0,3. Это условие отбирает преимущественно струи b-кварков от процесса расщепления глюона на два b-кварка в партонном ливне. Среди треков струи отбираются надежно измеренные треки с рт > 1 ГэВ и вычисляется их поперечный прицельный параметр d0 относительно точки соударения протонов. Величина d0 определяется как наименьшее расстояние от трека до точки взаимодействия и ей приписывается знак в зависимости от направления смещения относительно оси струи, определенной в калориметре. Если трек пересекает ось струи позади точки соударения, то величина d0 имеет отрицательный знак. На рис. 10.12 показаны распределения параметра d0 (|d0| < 1 мм) для треков от разных кварковых струй. Наибольшие положительные значения d0 присутствуют в струях b-кварков, наименьшие в струях от легких кварков u ,d, s.
Рис.10.12. Распределения параметра d0 с приписанным знаком для треков от разных кварковых струй. |
Повышение надежности идентификации проводится затем путем поиска вершины от распада В-адрона в струе, включая распад с-кварка, возникшего от распада В-адрона. Для этого комбинируются пары треков с наибольшими значениями прицельного параметра d0 и реконструируется их общая вершина. Для вершин с хорошим качеством реконструкции определяется эффективная масса частиц, чтобы исключить распады К0 и Λ-частиц и конверсии фотонов. Оставшиеся вершины объединяются в одну; определяется эффективная масса частиц в вершине и отношение суммарной энергии частиц в вершине к энергии всех частиц в струе, а также полное количество вершин с парами треков. Поведение этих трех параметров показано на рис.10.13 для струй b-кварков и легких струй.
Рис.10.13. Эффективная масса частиц из вторичной вершины в струе (справа), доля энергии струи, уносимая этими частицами, и количество двух частичных вершин в струе (слева). Сплошные линии соответствуют струям b-кварков, пунктирные – струям от легких кварков. |
Эффективность второго алгоритма зависит от топологии события. С применением обоих алгоритмов вычисляются функции максимального правдоподобия и используется многопараметрический анализ для оптимизации фактора подавления струй легких кварков и идентификации b-струй. Достигнутые соотношения степени подавления легких струй и эффективности выделения b-струй показаны на рис.10.14 для событий с рождением t и WH. Видно, что фактор подавления более 100 достижим при эффективности выделения b-струй 60%.
Рис.10.14. Соотношение степени подавления легких струй и эффективности выделения b-струй для событий с рождением t (справа) и WH (слева). |
Коэффициент подавления струй легких кварков зависит от рт струи и её псевдобыстроты. Это видно из рис.10.15.
Рис.10.15. Коэффициент подавления (режекции) струй легких кварков в зависимости от рт струи (слева) и псевдобыстроты. Разные точки отвечают алгоритмам в двухмерном пространстве прицельного параметра (светлые точки) и в трехмерном пространстве (темные точки). |
Наибольший интерес представляют оценки возможностей детектора для достижения основных задач LHC: поиска бозона Хиггса, суперсимметричных частиц и возможных экзотических состояний. Результаты моделирования потенциальных возможностей детектора ATLAS в наиболее актуальных областях физики частиц приведены в следующих разделах.