

Детектор нейтрино для мониторинга атомных реакторов

А. Чепурнов НИИЯФ МГУ

Работы ведутся по гранту РФФИ - 12-02-12129 ОФИ-м

Свое выступление я посвящаю памяти Льва Александровича Микаэляна - научного руководителя нашего проекта

Эксплуатируются АЭС, строятся новые энергоблоки. Эксплуатируются АЭС, планируется строительство новых энергоблоков Нет АЭС, станции строятся Нет АЭС, планируется строительство Эксплуатируются АЭС, строительство новых пока не планируется Эксплуатируются АЭС, рассматривается сокращение их количества Гражданская ядерная энергетика запрещена законом Нет АЭС

Ядерное топливо

Таблетки из спеченного UO₂ обогащенного ²³⁵U

Энергетические ядерные реакторы

BB3P -1000

1-активная зона 2-паро-водяные моммуникации 4-ГЦН 5-Раздаточно б-подводящие

РБМК-1000

	Тип реактора			
Параметр	ВВЭР-440	ВВЭР-	РБМК-1000	РБМК-1500
		1000		
Мощность (эл.), МВт	440	1000	1000	1500
Мощность (тепл.), МВт	1375	3000	3200	
Схема, число петель	Петлевая,6	Петлевая,4	Петлевая 7	Петлевая 7
Размер активной зоны:				
Н, м	2,46	3,56	11,8	11,8
D. м	2.88	3.10	18.5(22.3)	18.5
Глубина выгорания топлива, МВт-сут/кг ³⁵ U	30	40	—	—
Плотность тепловыделения, кВт/л	86	111		
Температура теплоносителя в активной				
зоне, К, вход/выход	541/569	561/590	553*	553*
Давление в первом контуре (перед				
турбиной), Мпа	12,5	16	(6,5)	(6,5)
Обогащение ²³⁵ U, %	3.5	3,3-4,4	1,8-2	

Энергетические ядерные реакторы

БН-600

	Тип реактора		
Параметр	БН-350	БН-600	БН-1600
Мощность (эл.), МВт	150	600	1600
Мощность (тепл.), МВт	1000	1470	4000
Схема	Петлевая	Интегральная	Интегральная
Размер активной зоны:			
Н. м	1,06	0,75	1,0
V. м ³	2,08	2,57	9,0
Максимальная глубина выгорания, МВтсут/кг ²³⁵ U	55	96	96
Коэффициент воспроизводства	1,4	1,3	1,4
Максимальный нейтронный поток, 10 ¹⁵ нейтр./см ² ·с	8	10	10
Максимальная плотность тепловыделения, кВт/л	730	806	710
Температура теплоносителя в активной зоне, вход, К	773	823	820
Давление пара, Мпа	4,3	14,2	14,2
Температура пара, К	708	778	763

Откуда берутся реакторные антинейтрино

Тепловая мощность ⁴МВт - > **3×10**²¹ делений -> ~ **2 ×10**²² √/день

Плотность потока анти-нейтрино, измеряемая дистанционно во время работы реактора, прямо пропорциональна числу делений или скорости выгорания ядерного топлива. (1ГВт- 10¹³ v/ см²×с)

Энергетический спектр антинейтрино

 $n + {}^{238}U \rightarrow {}^{239}U \rightarrow {}^{238}Np \rightarrow {}^{239}Pu$

 $n + {}^{239}Pu \rightarrow {}^{240}Pu + n \rightarrow {}^{241}Pu$

Группа Schreckenbach et al. провела тщательные измерения бетта-спектров ²³⁵U, ²³⁹Pu и ²⁴¹Pu Затем бетта-спектры были конвертированы в спектры антинейтрино путем «специальной процедуры».

Неопределенность : 1.9%

1.3% (3MeV)÷9% (8MeV) – процедура преобразования

Для ²³⁸U нет измеренных данных, есть только теоретические вычисления

P.Vogel, G.K.Schenter, F.M.Mann, R.E.Schenter. Reactor antineutrino spectra and their application to antineutrino induced reactions. Phys. Rev. C., 1981, v. 24, p. 1543-1553.

Мы исходим из того, что точность с которой мы знаем спектр оценивается в 3%

Обратный бетта-распад – основной процесс для детектирования антинейтрино в ЖС детекторах

Жидкий H-содержащий сцинтиллятор допированный Gd/Cd или пластиковый сцинтиллятор со слоями Gd/Cd

Эффект от добавления Gd

Время жизни нейтронов в зависимости от концентрации гадолиния.

Вероятность захвата нейтронов гадолинием в зависимости от его концентрации

История детектирования нейтрино от реакторов

• Впервые продемонстрировано - F.Reines and C.L.Cowan с помощью ЖС-детектора

$$\overline{\nu}_e + p \rightarrow n + e^+$$

Detection of the Free Neutrino*

F. REINES AND C. L. COWAN, JR. Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico (Received July 9, 1953; revised manuscript received September 14, 1953)

Large Liquid Scintillation Detectors*

C. L. COWAN, JR., F. REINES, F. B. HARRISON, E. C. ANDERSON, AND F. N. HAYES Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico (Received February 24, 1953)

"Detection of the Free Neutrino: A Confirmation", C. L. Cowan, Jr., F. Reines, F. B. Harrison, H. W. Kruse and A. D. McGuire, Science 124, 103 (1956).

value. The measured cross section for fission antineutrinos on protons was

 $\bar{\sigma}_{exp} = (12^{+7}_{-4}) \times 10^{-44} \text{ cm}^2$

compared to the theoretically expected value (13)

 $\bar{\sigma}_{\rm th} = (5 \pm 1) \times 10^{-44} \, {\rm cm}^2$

Frederick Reines -Нобелевская премия 1995 за его работы в области физики нейтрино

Fig. 6 (left). Sketch of detectors inside their lead shield. The tanks marked 1, 2, and 3 contained 1400 liters of triethylbenzene (TEB) liquid scintillator solution, which was viewed in each tank by 110 5-inch photomultiplier tubes. The TEB was made to scintillate by the addition of p-terphenyl (3 grams per liter) and

POPOP [1,4-bis-2-(5-phenyloxazolyl)benzene] wavelength shifter (0.2 g per liter). The tubes were immersed in pure nonscintillating TEB to make light collection more uniform. Tanks A and B were polystyrene and contained 200 liters of water, which provided the target protons and contained as much as 40 kilograms of dissolved $CdCl_2$ to capture the product neutrons. Fig. 7 (right). Inside view of electronics van showing equipment required to select and record neutrino signals.

ЖС детекторы

Антинейтрино детектируется за счет «задержанного совпадения»:

- «позитронное» событие $T = E(v_e) - 1.8MeV(threshold) + m_ec^2$

- захват нейтрона n+H & Gd → γ...(2.2MeV(~200mks-20%)& ~8MeV(~30mks-80%)
 3 МW реактор (ВВЭР-1000) излучает ~6×10²⁰ √/сек ¼ энергия > 1,8 MeV

Преимущества:

- сигнал/шум 1:10
- эффективность 60%
- возможности измерения спектра
- дискриминация по форме импульса
- работа в реальном времени

Недостатки :

утеканние гамма-квантов, что приводит
 к снижению эффективности и росту
 ошибок в определении спектров

ЖС детектор RONS (Курчатовский институт)

Ровенская АЭС- ВВЭР-440

Отношение сигнал/фон 1:10 Эффективность (n) 60%

Основная проблема – деградация Gd-ЖС

- 1 корпус (акрилик)
- 2 внутренний объем для ЖС
- 3 гамма кэтчер 540 л
- 4 чувствительный объем 510 л
- 5 отражатели
- 6 светосбор (масло минеральное)
- 7 ФЭУ-125
- 8 тележка

R = 18 m 1000 событий/день (1.4ГВт) 200 Фоновых событий в день

Климов Ю.В., Копейкин В.И., Микаэлян Л.А., и др. Измерение спектра электронных антинейтрино ядерного реактора// Ядерная физика, 1990, Т.52, вып.6(12), с.1579-1584

Детектор WIND (Курчатовский институт)

Детектор интегрального типа для регистрации только нейтронов.

Не подходит для мониторинга ректоров поскольку возможна фальсификация данных n- источником

Форма спектров антинейтрино в момент рождения в процессе деления актиноидов в активной зоне детектируется низменной в чувствительном объеме детектора.

- определить остановку реактора в течении одного дня
- провести оценку содержания плутония в топливе
- в реальном времени
- -контроля за процессом выгорания топлива

Приведенные данные показали возможность :

Детектор WIND

Счет событий ~ 2-3 ×10³ 1/день

Экспериментальное подтверждение нейтринного метода

Детектор SONGS 1 (Sandia/LLNL)

SONGS1 Measurement, 2005-2006

Детектор DANSS (ОИЯИ)

Прикладаная физика нейтрино сегодня

Запрос от ядерной энергетики – удаленный мониторинг процесса выгорания топлива и дополнительный (независимый) способ измерения тепловой мощности реактора для подтверждения безопасного режима работы активной зоны реактора.

Обеспечение ржима нераспространения делящихся материалов по программам МАГАТЭ (INFCIRC/153, INFCIRC/540) :

- выявление несанкционированного производства плутония,
- контроль за процессом накопления плутония в топливе,

 контоль за активной зоной реактора с целью фиксации момента несанкционированной остановвки с целью несанкционированного извлечения плутония

Предлагаемый подход – детектирование потока антинейтрино в реакции обратного бетта-распада что делает невозможным фальсификацию данных.

Реализация данного подхода требует, что бы детектор был промышленнным т.е. : простым в серийном производстве, не дорогим, работающим в режиме «черного ящика» и не требующим обслуживания.

История прикладной физики антинейтрино в России

1974-1977	Исследование спектров антинейтрино (КИАЭ): - вычисление спектров от ²³⁵ U и ²³⁹ Pu, ²³⁸ U и ²⁴¹ Pu. -Измерение спектров от ²³⁵ U и ²³⁹ Pu.
	Было показано, что количество антинейтрино на акт деления ²³⁹ Pu меньше, чем при делении ²³⁵ U. A.Borovoi, Yu.Dobrunin, V.Kopeikin. Nucl. Phys. (Rus.), 1977, 25, 264
1977	Идеи высказанные Л.А. Микаэляном во время конференции <i>"Neutrino-77":</i> - скорость счета антинейтринных событий дает возможность удаленного мониторинга вырабатываемой ректором мощности, за счет прямой зависимости между <i>N(antineutrino) ~ N(fissions),</i> - форма спектров антинейтрино может быть источником дополнительной информации об изотопном составе активной зоны реактора
1978-1982	Несколько типов детекторов для исследований антинейтрино от реакторов было разработано (КИАЭ)
1983-1994	технико-экономическое обоснование метода было подтверждено в экспериментах на Ровенской АЭС (СССР) и, позже, на АЭС в Бюже (Франция) (КИАЭ IN2P3).
	Начало промышленнной фазы
2003-2006	НИОКР – промышленный прототип компактного необслуживаемого ЖС дететора для реализации программы нераспространения (<i>РНЦ Курчатовский и-т, НИИЯФ МГУ, ВНИИА им. Духова)</i>
2011- now	Мегагрант МИФИ - Использование двухфазного низкотемпературного детектора и эффекта когерентного рассеяния нейтрино для мониторинга активной зоны реактора. Колаборация РЭД.
2012-now	ОФИ-м РФФИ Создание прототипа промышленного жидкосцинтилляционного детектора для мониторинга режимов работы атомных реакторов нейтринным методом <i>(НИИЯФ МГУ, РНЦ Курчатовский и-т, ИЯИ РАН, ВНИИА им. Духова)</i>

Стадии НИОКР по разработке промышленного детектора антинейтрино.

Формулировка физических основ

Моделирование МС

Проектирование механической конструкции

2003-2006

Разработка элементов системы сбора данных и ПО

Разработка детальной КД

Моделированиме МС

отложены

Изготовление прототипа и тестирование

Разработка сценариев использования

Демонстрационный эксперимент на АЭС

Что изменилось с 2006 по 2012 гг

Стабильные Gd-ЖC были разработаны и в промышленных масштабах производятся

J.S. Park, J. Lee, et al., Production and optical properties of Gd-loaded liquid scintillator for the RENO neutrino detector, Nuclear Instruments and Methods in Physics Research A, <u>http://dx.doi.org/10.1016/j.nima.2012.12.121</u>

C.Aberle, C.Buck, B.Gramblich F.X.Hartman, M.Lindner, S.Schonert, U.Schwan, S.Wagner, H.Watanabe, Large scale Gdbeta-diketonate based organic liquid scintillator production for antineutrino detection, arXiv: 1112.5941v2[physics.ins-det] 25Jun 2012.

И.Р. Барабанов, Л.Б. Безруков и др. ЛАБ как базовый растворитель для создания жидких сцинтилляторов большого объема. Препринт ИЯИ РАН 1279/2011

Высоко производительная электроника стала доступной – flash ADC для **дискриминации по форме импульса** FPGA для организации триггеров в реальном времени

для

Стадии НИОКР по разработке промышленного детектора антинейтрино.

Разработка физических основ

Моделирование МС

Раазработка механической конструкции

2003-2006

Разработка элементов системы сбора даанных и ПО

Разработка детальной конструкции и комплекта КД

2012-2013

Моделирование МС

Разработка жидкого сцинтиллятора

Модернизация системы сбора даанных и управления

2013-2014 Изготовление первого прототипа, его запуск и тестирование

Разработка сценариев применения

2014-....

Демонстрационный эксперимент на АЭС

Цикл изготовления жидкого сцинтиллятора

Gd концентрат (разработка группы Новиковой Г.Я. из ИЯИ)

Созданы координационно-насыщенные соединения гадолиния на основе триметилгексаната гадолиния Gd(TMHA)3 с добавками триоктилфосфиноксида (TOPO) и свободной 3,5,5-триметилгексановой кислоты. Получены 0,1% растворы Gd в ЛАБе (линейном алкилбензоле) и измерены их оптические свойства.

Два метода были использованы:

1. предварительный синтез и очистка твердых комплексов с последующим их растворением в LAB с добавленние кислотного лиганда в чоотношении 1:3

2. синтез в процессе жидкостной экстракции в водном растворе солей Gd с добавлением кислоты и конечного растворителя LAB

Gd-ЖС на основе LAB (прозрачность)

Прозрачность образцов LAB и 0.1% раствора Gd (TMHA) комплекса в LAB.

Sample	A _{min} , nm	A ₄₃₀ , nm	L ₄₃₀ , m	A ₄₂₀ , nm	L ₄₂₀ ,m
LAB промышленный	-0,0227	-0,0150	5	-0,132	4
LAB (1:6 очищенный)	-0,0256	-0,0246	> 20	-0,0244	> 20
LAB+TMHA	-0,0274	-0,0259	> 20	-0,0257	> 20
Gd(TMHA) ₃ +2TMHA ("экстракция")	-0,0260	-0,0235	17	-0,0230	14
Gd(TMHA) ₃ +3TMHA ("экстракция")	-0,0283	-0,0257	16	-0,0252	14
Gd(TMHA) ₃ *2ТМНА ("твердая соль")	-0,0251	-0,0224	16	-0,0218	13
Gd(TMHA) ₃ * TOPO	-0,0229	-0,0196	13	-0,0192	11
Gd(TMHA) ₃ + 3TMHA (готовы первые 30 л для тестов)	-0,0271	-0,0236	12	-0,0231	10

30 л прототипы для предварительных тестов

26

B (2:1)

B-B (1:1)

ľ(1:1)

G1/2

DET-H.00.00CE

1.2.5

Проверка совместимости конструкционных материалов с ЖС Проверка конструкционных решений Проверка электронных трактов ФЭУ Измерение параметров ФЭУ и ЖС (Сентябрь – октябрь 2013)

Корпус детектора

Электроника

Front-end

Сумматоры-дискриминаторы 19" с встроенными декауплерами и управлением по шине CAN (готовы)

DAQ 1Gs/s flash ADC PCI

Slow control

Распределенная система управления с шиной CANopen и промышленными модулями ввода/вывода (заказано)

<u>ФЭУ :</u> ФЭУ-49, НАМАМАТSU R5912,ETE 9823

<u>ФЭУ BB</u>: CAEN HV Multichannel Power Supply System

Выбор места для физического пуска детектора.

Фаза 1 – гидравлические испытания и первый запуск – Курчатовский институт (Ноябрь 2013)

Фаза 2 – физический пуск, измерение фона и нейтронный калибровки НИИЯФ (Декабрь 2013 – Февраль 2014)

Возможное место размещения - 19 корпус, подвал РХЛ

Использование ЖС-детектора нейтрино в НИИЯФ МГУ

•Решение задач прикладной физики нейтрино

•Отработка экспериментальных методик для научных реакторных экспериментов

- разработка и исследование свойств новых ЖС
- исследование свойств ФЭУ и других современных детектирующих приборов
- разработка и испытание электронных трактов и программного обеспечения для систем сбора и обработки данных

•Обучение студентов современным методикам регистрации ядерных излучений с применением ЖС и современных спеткрометрических электронных трактов.

Заключение

Проект находится в активной стадии. Запуск детектора запланирован на І квартал 2014 г.

Предполагается его продолжение вплоть до проведения демонстрационного эксперимента на атомной станции.

Приглашаются студенты и другие заинтересованные лица к участию в проекте.